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1.0 INTRODUCTION

In this report we summarize various aspects of our

investigations of near and far wing pressure broadening theory
3 as it applies to molecules of atmospheric interest, particu-

> larly H20. The main body of the report, Section 2.0, describes
_ a new and rigorous theory for calculating far wing absorpticn.
4 This theory satisfies the Fluctuation-Dissipation Theorem and

1 includes all possible line-coupling effects. A journal ar-

- ticle describing the theory in further detail is planned for
the future.

Section 2.0 summarizes results of our detailed cal-
culations of H20 halfwidths for both N, and self-broadening.
The results for N2 broadening have been incorpcrated intc the
latest edition of the AFGL Atmospheric Line Parameter Atlas.




2.0 RIGOROUS T-MATRIX THEORY OF MOLECULAR FAR-WING ABSORPTICM

i

s

N 2.1 Preliminary Considerations

We shall discuss a microscopic theory of far-wing

R pressure broadening which contains the following features:

a) The theory satisfies the Fluctuation-Dissipation Theorem
(FDT).

b) The theory contains all possible line-ccupling effects.

c) In principle the theory contains pressure induced trarsi-

ticns (electronic states must be included).

d) The present theory can probably be modified tc include

two-body bound states, i.e. dimers.

The theory which we shall discuss will be rigorous
whenever the far-wing absorption can be described in terms of
the binary collision approximation in its simplest sense. Ry

this we mean the following. If o(w) is the absorption co-

efficient, the binary collision approximation is appropriate

when, experimentally,

e -

_ alw) « Dad. nper.’ (1)
a
: for foreign gas broadening,

a(w) « n? (2)

rad.

for self-broadening, where n are the radiatcr and

.r rad.’? nper.
perturber densities, respectively. We comment that the ex-

isting experimental measurements of far-wing absorptionl:i/

for molecules of atmospheric interest, e.g. F20 and COZ’ are N
R completely consistent with the above conditions, at least at

the relatively low pressures appropriate to the measurements.

The present theory does not attempt to correctly
treat the strong absorption near the line centers of allowed

band. It is important, however, to put this neglect into
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perspective. For most cases, the spectral region near the
line center is well approximated by the impact approximatior.,
which takes the form

a(w) « n (3)

Tes
2

rad. 2

for a transition 1 + f. Here the half-width can be written

Fey ° "per. Vv Ofi o (u)

where v is the mean relative thermal velocity and Ofs is a
scattering cross-section calculated in the binary collision

approximation, with Ocs independent of densi+y.

In the impact approximation, a(w) satisfies condi-

tion (1) as soon as the approximation

.. ..
fi . ~ fi , (5)

2 2
(W-wg )" + Tes (w-wgy)

is appropriate. Clearly if Aw = |w—wfi| > 10 Tg., this ap-

proximation is valid to within one percent. A typical value
for Ffi appropriate to H20 self-broadening at 10 Torr pressure
is Tg; = .006 cm™ ', hence Aw > 10 T.. corresponds to

Aw > .06 cm™ ',

From these considerations we conclude there is a
small region near the line center where condition (1) does
not apply. This region should be well described by the usual
impact theories. Beyond this region, condition (1) applies
and the theory presented in this report should be appropriate.
Moreover, in Section 2.4 we suggest a reasonable interpoletion
formula to describe the entire line profile.

We regard as imperative the requirement that a fer
wing theory satisfies the FDT. In the far wings factors of
the form exp{* BhAw} are highly important, particularly in

terms of the temperature dependence of the far-wing absorp-
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tion. Although a number of authors have presented T-matrix

approaches to lineshape theory,élgl it is not clear to what

extent these theories are consistent with the FDT.

The Fluctuation-Dissipation Theorem has been incor-
porated into a number of essentially phenomenological
theorieslg/ using the Egelstaff-Schofieldli:lé/ complex time
transformation. These theories force the FDT to be valid on a
line-by-1line basis, using a lineshape function involving a
rnumber of adjustable parameters, typically a time between
collisions, L and something analogous to the duration of

collision, Tyq.

Our present theory gives a microscopic prescription
for calculating the above type lineshape functions, and, in
addition, the prescription is valid when line-coupling effects
are included.

2.2 General Theory and Binary Collision Approximation

We write the absorption coefficient as

yrle

alw) = T x"(w), (6)

where x"(w) can be written

Biw

x"(w) = tanh () [4(w) + ¢C-w)], (7a)
= (1 - e Py 4wy, (7b)
= [¢(w) - $(-w)], (7¢)

with

o) = F I oCE) [<ITIF>|? 8CEL - &1 - 4w). (8)

IF

Here I, I refer to exact eigenstates of the marny-body svster,

Q is the system volume, and




p(E) = e Be1/rr ¢ BH, (9)

is the equilibrium canonical density matrix. The equivalence
of the three formulas (7) is contained in the FDT

$(~w) = e~ PATW ¢ (w), (10)
which is easily proven from Eq. (8).

In the time-domain the theory takes the form

x"(w) = tanh (B [ QL 710t racey 4+ g-0)], (1la)
= (1 - 7Py po gt om0t gy, (11b)
= g% e—iwt [o(t) - ¢(-t)], (11c)

where

$(t) = g Tr {pi+H(D)}, , (12)

: $(-t) = 3= Tr {ol-N(-t))

é

[ _ 1 > -+

g = 35 Tr {pl(1)-3}, (13)
] with ﬁ(t) = elHtﬁh ﬁ e’lnt;n. The equivalence of formulas

* (11) is contained in the time-domain statement of the FDT

N ¢(-t) = ¢(t + iph), (1)
’ which follows from (12), (13). Condition (14) must alsc be

consistent with the condition

o(-t) = 6()", (15)
which guarantees that ¢(w) is real.

In all of the above equations the Hamiltonian H re-

fers to the full many-body Hamiltonian. We now invoke the




binary collision approximation in its simplest sense. .In the
time domain we argue that the far wings will be determined
by times, t < Ty where T4 is the duration of a collision.
At typical low or moderate densities of experimental interest,
we argue, for such short times, that it will be impossible
for a given molecule to interact with more than one perturter.

Hence we write

N__.
airs +> >
o~ . 3
$(t) —Pqﬁr Tr {pn U(t)}pair” (18)
where N is the number of possible pairs of radiating and

pairs
perturbing molecules. In particular

Npair's = Npad. Nper.’ (l€a)
for foreign broadening,
N
_ rad.
Npairs = — 72— MNpag, = 1
NZ
- 5%, (161)

for self-broadening. Then in Eg. (15), the trace is to be
taken corresponding to p(H), H appropriate for a two-bcdy

(pair) EHamiltonian. In this expression we also have

ﬁ = ﬁ] (foreign) (172)
e (i + 1) (sef), (171)

where 1, 2 refer to radiator and perturber respectively.

In the frequency domain we cobtain

¢ (w) o(t) e 1wt

T dt
/

i

N .
= PEEES T p(E[<I|U|F>|2-8(EL - Ep -4,  (18)
IF

.‘.4......»..,-‘.;-‘..«__.———-
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where I, F now refer to exact eigenstates of the two-body
Hamiltonian. It is clear that the binary collision approxi-

mation preserves the FDT, in particular

¢(-w) = o~ Bw o (w).

2.3 T-Matrix Theory

We begin by rewriting Eq. (18) as

N__. o
¢(w) = —2%335 J ) p(EI)|<I|ﬁ|F>|2
- IF
or
N airs 7 ~BE -
¢(w) = B2 [ dE e ;F I<T|u|F>|?

§(E;-E) &(Ep-E~Hw),

BH

where Z = Tr e = is the two-body partition sum.

(21) can be re-expressed as a trace according to

N ...
ow) = B2 [ dE B(E)

Tr {§(H-E)n 8 (H-L-tw)l},

(19)

(20)

(21)

Equation

(22)

where pP(E) = e-BE/Z. Note that p is a number (not an

operator).

Our object is now to manipulate the trace expression

such that when the trace is evaluated in the representation

of uncoupled (non-interacting) two-body states, the integral

over dE can be simply evaluated. To accomplish this, we begin

by invoking the standard identity

§CH-F) = 7%? (H-T-io™)™ 1 - (-p+io*) 1},

(22)




.
1
For a general complex energy z we also have the identity
(B-2)"1 = (Hy-2)" - (Hg-2) 7! VeH-2) T, (24)
where V is the two-body potential, and where H0 denotes the
non-interacting two body Hamiltonian, i.e.
H = Ho + V.
The identity (24) can also be written in terms of the two-body
.. 16/ .
T-matrix,— according to
-2)"t = (-7t - -2 T2 (Hg-2) 7T, (25)
where T(z) satisfies b
T(z) = V - V(Hy-2)"T T(z), (2€)
anrd
i %
T(z) = T(z ). (27) %
Now from Eqs. (23), (25) we obtain ‘
§(E~-LE) = G(HO-E) %
P
1 I | .+ .+ -1 P
=1 {(HO—E—lo )7 T(E+io ) (Hj ~E-io ) ;
l 1
- (Hy-E+io" )™ T(E-i0") (Hy-E+io") 7MY, (28) j
. \ 5
we now subtract and add a term (HO-E+io+)- T(E+io ) i
(HC-E-io+)—l, and cbtain ;
§(H-E) = &(Hy-F) !
- 8(Hy-E) T(E+io®) (Hy-E-io*)™? }

1 . +y-1 .+ NS |
- T (HO-E+10 ) {T(E+io") (Hy-E-io’)

T(L-io*) (HO-E+io+)‘1}. (29)




In the bracket expression we subtract and add a term
T(E-io™) (HO—E-io+)—l, and obtain

6 (H-E)

S(Hb—E)

8(H,-E) T(E+io®) (HO-E-io+)°1

<HO-E+io*)’1 T(E-io®) 8(H -E)

(Hg-E+io") ™ ol [T(E+io®)-T(I-1i0*)] (Hy-E-i0") 71,

(30)
Finally, in the last term we invoke the operator forleilﬁf of
the optical theorem !
! :
1 .+ .+
R - -
Y [T(E-io ) T(E+io )]
.+ .+
= T(E+io ) G(HO—E) T(E-io ). (31)
This yields the decomposition
§(H-E) = 6 (Hy-E)
- [8(Hy-E) T(E+io') (M -E-io")™*
+ (Hg-E+io®) ™! T(E-io%) 8(H,-E)] -
3
. + (Hy-E+io")™! T(E+io®) 86(H-E) T(E-io") (Hy-E-io")™1.
(32)

It should be noted that the right hand side of Eq. (32?) is a

sum of three Hermitian operators.

The above decomposition of the operator &6(H-F) is
clearly sufficient to enable the dFE integration in Lq. (22) to
be performed when the trace is evaluated in the representation
of non-interacting states. In particular, every term in Eg.
(32) contains a factor 8(H,-E). The matrix elements of this




i e et

operator between uncoupled (non-interacting) two-body states i,
j are given by

<i|8(Hy-E) ]3> = 8 3 §(e.-E). (33)

Using the identity (32) we can now decompose Eq.
(22) into terms involving products of:

a) No T-operators

b) One T-operator

c) Two T-operators
d) Three T-operators
e) Four T-operators.

Before doing this, it is convenient to rewrite p(L) = e_BE/Z, as

B(E) = py(E) v , (3u)
where

. -EE
pO(E) = e /Z0 ’ (3%5)

is the unperturbed density function, with Zg = Tr {e-SHO},
ard where v = (ZO/Z) is the ratio of the unperturbed tc the
exact partition sum. Evaluation of the constant v is clearly
non-trivial. However, one suspects that the approximation

v = 1 should be adequate, and this approximaticn in no way

compromises the validity of the FDT.
From Eqs. (22), (32) ¢(w) decomposes into five terms

¢(w) = ¢0(w) + ¢1(w) + ¢2(w) + ¢u(w) + ¢5(w). (3€)

The terms are given as follows

N . o .
¢g(w) = v —P2ITS {m dE po(E) Tr {§(H)-EXU 6(E -E-Mw)d},  (37)

10

1
|




(W) = - v fE%iEE ?m dE py(E)

- Tr {8(Hy-E)il [8(1 -E-Hw) T(E#hw+io’) (H -E-tw-30%)71
+ (H-E-Huw+io’)™1 T(E+u-io®) §(H -E-Kw)I}

+ [8(Hy-E) T(E+io’) (B -E-io")7!

+ (ho—E+io+)—1 T(E-iot) 6(H0-E)]§ 5(H0-E-hm)ﬁ]}, (38)

N __. o
¢ (w) = v BE=T2 [ dE p (D)

- Tr {8(H,-E)} <H0-n-hm+io*)‘1 T(E+Huwt+io®)

+ 8(Hy-E-Hw) T(E+fu-io®) (HO—E-hm—io+)—1 u

+,-1

+ (Ky=L+io") T(E+io’) 8 (H,-E) T(E-io")

. (HO-E-io*)‘l ¥ &(H~E-mwi}, (39)

(-]

N__.
pairs
—— {m dE p,(E)

¢3(w) =+ v a

- Tr {[6(k,-E) T(E+iot) (HO-E~io+:‘1

+ (Ho-n+io*)'1 T(E-io") &(H,-E) NV

o [8CH -E-tw) T(E+twtioh) (H0~E-hm-io+)—1

F

F-

S ; . to=-1 o . 4 -+

i + (hO—E-h%+1o ) T(E+Hw-1io ) G(HO-E-hm)]u}. (40)

:

?,

B The additional terms, ¢u(w) and ¢5(w), involving
products of three and four T-matrices, will not be considered

in any detail. TFor completeness, these are listed ir Section
2.5.




The six terms ¢0(w), « « « « ¢.(w) individually
satisfy the FDT. The proof is the same in every case, and
consists of the following steps:

a) Write down the corresponding expression for ¢n(-w).
b) Make the change of variables E + E + Hw in integration.
c) Use cyclic invariance of the trace.

As an example of the procedure, we consider

N__. L3
¢pl-w) = v _E%iﬁi | dE po(E)

« Tr {8(Hy-L)V 6(H0-5+hm)ﬁ}.

Now let E + } + Hw, and use the fact that

-B(L+Kw) _
p o (E+H) = SL-7;_-__ = o Phiw po(E). (41)
Then
~-BH N airs %
pg(-w) = ™7 v BEITS [ dE p (E)

. Tp {6(HC-E-nw)E G(HO-E)E}.

Using cyclic invariance of the trace we then obtain

boC-w) = PP 4 (). (42)
Now it turns out that the terms, ¢O(w) and ¢1(w),
involving zero and one T-matrix have nothing to do with "far-
wirg" absorption and must be discarded. For ¢0(m) this is
almcst obvious since the expression does not involve the in-
teraction. We want to state somewhat more carefully the mean-

ing of dropping these terms, however.

The terms ¢0(w) and ¢1(m) would rigorously vanish
if, in the "far-wirg" region, no local lines of the allowed




spectrum were present. However, in a realistic spectrum there

will always be some weak allowed transitions in the "far-wing"

- spectral region. In this case to obtain the true "far-wing"

. absorption one must subtract out the contribution from local
lines, both experimentally and theoretically. 1In our theo-
retical treatment such contributions are easily identified,
and can be eliminated.

Consider a product of the form

<iful£> 6Cep-e ) , (43)
where [i>, |f> correspond to (uncoupled) eigenstates of Hy. 5
If the quantity (42) does not vanish then there is certainly
a local ine of the allowed spectrum present in the "far-wing"
region of interest. This contribution must be dropped, (a)
because it doesn't correspond to true far-wing absorption,

and (b) hecause the local line contribution is incorrectly

E,y treated by our formalism.

As an example, evaluation of ¢0(m) in the represen-~ 1

tation of uncoupled states gives
N airs
v —25——— {f Po(E;) S(ep-e -Hn)

l<ilu|£>]2 . (uu)

¢0(w)

In this equation |i>, |f> are, strictly speaking, two-body

eigenstates, including the wavefunction for relative transla-
tioral motion. However, because I does not operate on either
the trarslational wavefunction or the perturber wavefunction,
it is easily seen that (44) is correct with [i> and [f> taken

simply to be the internal states of the radiating molecule.

According to our previous discussion, (44) must be
dropped since all non-vanishing contributions correspend to
local lires which are incorrectly treated. We might also

note that oo(w) does not have a sensible dependence on volume.,




Since Npairs = Nrad. Nper.’ we see that

¢0(w) * Mrad. nper-. 2,

ri which diverges as  + «. The term ¢1(w) can alsc be elimin-
ﬁ; ated for the same reasons, i.e. we can show that every term
‘ in ¢1(w) contains a factor corresponding to Eq. (43).

and ¢,(w) in the representation of uncoupled two-body states.

b
F We now proceed to evaluate the expressions for ¢2(w)
¥ We obtain the following explicit results.

N__.
0,(w) = v —Rairs

p.C€.)
ijkg O 3

{<i[ﬁ[j> . <2Lﬁ]i>
€.~€.-Hw €,-E:-Hw
j 1 L "1

- <j|TCe +io") [ko<k|TCe -i0" ) [2> §(e)~€;~Fw)

+<Uih; .<uiu;
Ez—Ej— w EE—ER— [}

s <3|TCe +i0") [i><i|T(es-i0") [k> (e - -Hu)], (45)

N__.
-V RalPS X po(ei)

ik

¢3(u)

. o(cilulke | o<eluli>
ek—e.;ﬁw €,~€ .-
] 271

. <i]T(ej+io+)]j><k|T(ek+io+)|1> §(e, - ~Hw)

. <ilﬁl§;, . <zLﬁL%g
Ek-Ei (] EE—Ej [V}

L s e

- <j|TCes-10") |3><k|T(e,-i0")[2> &(e - ~Huw)}. (46)

1y




Several comments on these results are in order.

V First we observe that the expressions contain line-ccupling
contributions, since none of the terms involve simple matrix

products of the form |<i|n|j>|%. It is a straightforward

Sy 0
.

exercise in juggling indices to prove that ¢?(w) and ¢,(w)

e

3 : are real and individually satisfy the FDT. In cobtaining the
expression for ¢3(w), two terms have been completely elimin-
- ated because they contained factors of the form (43), Finally
we note that every ﬁ matrix element is multiplied by an enersy

denominator containing the same indices, e.g.

: <ifulj>

- ej-ei w °

If the energy denominator can vanish in the spectral region

of interest, and if <i|u|j> # 0, then the contribution is to
be dropped because it corresponds to a local line in the "far-

wing" region. In all of the discussion which follows, we

shall assume that ali allowed transitions are far removed from

the "far-wing" spectral region of interest.

To conplete the formal discussion we note from Eq.

man

(26) thet the matrix elements of the T operator satisfy the
"integral" equation

<j|V[k><k[T(z)]i)

€, ~7
k

(u7)

<j|TC2)|i> = <jlv]i> - ]
k

rrom Eq. (27), the rule for taking complex conjugates of
matrix elements is

- (<3]TC2) (i) % = <i[T( T[5> = <i|TzT) ]3>, (ue)

The matrix elements which appear in Egs. (u45) and

. (4€) car. also be expressed in terms of the ingoing |i>_ and
outgoing li>+ wave solutions of the two-bodv Schroedinger
equation. Corsider, e.g., the matrix element <j|T(£i+io+)|i>

3 which occurs in Eq. (45). From Lq. (47) we have




!
i

. <j|V|k><k|T(e, +io")|i>
<jlTCe +ioT)i> = <j|v[i> - { e . (u9)
€, -€.-10
k "1

The states |i>* are given from scattering theorylg/

as the solutions of

li>, = |i> - (Hg-e,FioH)™ v]is,. (50)

Now consider

o o <3 |V]x><k|V]i>,
<jlvli>, = <j|v]i> - £ — . (51)

-c.ti0
k "1

Comparing Eqs. (u49), (51) we see that the "integral" equations
are identical, hence that

<jiTCes+io)|i> = <j|v]i>,. (52)

In this case the problem reduces to solving Eq. (5C) for
|i>+. By multiplying Eq. (50) on the left by (Ho—ei—io+),

and noting that (Hy-e;)|i> = 0, we obtain

H|i>+ = Ei!i>*, (53)

which is just the Schroedinger equation for the unbound states,
with the boundary condition that [i>, corresponds to an out-
going wave. Similarly, in FEq. (4€6), the matrix element
<jIT(€i—io+)|i> can be replaced by

<jlTCe-i0™) 5> = <j|V]i>_. (54)

Finally, the uncoupled two-body states which we have

dencted Ly |i> are eigenstates of the Hamiltonian

. pC0) (0) A2 o2
Hy = Hy d(1) + H; 4(2) + 5=V , (58)

S

where the first two terms are the Hamiltonians for the in-

ternal states of molecules 1, 2, and where ro= ;1 - r, is the

2

relative translational coordinate, with




T

2y Y A Ty

1 M2
]
my+m,

m = (56)
the reduced mass. Equation (55) does not contain the transla-
tional motion of the two-body center of mass. Since neither
E or V involves the center of mass coordinate, its contribu-
tion to Egs. (45), (4€) cancels and need not be considered
further.

The eigenstates of (55) can be written
i> = |p,(1)>] (2)>|i > (57
|1 = ‘”i wi 170 )
where the translational states are given by

> ik, -1
(r) = <rlk,> = e i . (58)

1
Y+ g
ki Yo
These are orthonormal according to

<K.I|K.> = 6> = (59)
i kj,ki -

In the limit of infinite volume, sums over kK are converted to

integrals using the standard prescription

Lyas L _fa% (60)
e " (2m)?3

2.4 Simplified Discussion for Comparison with FPhenomenological

Lineshape Functions

In this section, for simplicity, we shall consider
only the ¢2(w) expression. We ghall further make the un-
coupled line approximation and we treat the internal states
as non-degenerate. In particular, we ignore the (2j+1)-
fold degeneracy of the rotational states.

We begin by rewriting Iq. (45) in the form
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N .
airs
v —Eﬁ——— ) pyE;)

$,(w) =
1jke
(<iluli> | o<aluli>
€.-€.-Hw €,~-€.~1Ww
1 1 £ 71
- <j|TCe +io") [Ko<k|TCe -0 ) 4> 8(e)—e;Hw)
o Salufe> | <ififi> -ty -eg)

€.-€,-Hw €.~-€.-Hw
R j 1

<2|TCe +io™) [k><k|T(e, ~i0")|1> 8(ey ~€;+Hw)}. (61)

An uncoupled line approximation can now be made by setting

£ = j in the first term, and 2 = i in the second term., It
shculd be noted that this is an approximation only as it per-
tains to the internal states of the radiating molecule. If we
consider <ilﬁ]j>-<£|ﬁ|i> and remember that JI does not operate
on the translational states or the perturber states, then we

must have £ = J for the translational and perturber states.

The uncoupled line approximation now yields

N . N
b (w) = v BEES gj pole ) |<iluli>]? b33 0muyi)s (62)

with
.. (w-w..)
- N S S E 3
¢ji(w wji) T (w_w")z ’ (6")
ji
Foo(w-wss) = 2= § {]<j|TCe +io") K> |2
ji Jji n? K k
D 6(w-uji-wkj)

R e+6h(m-wji) |<i|T(ek+io+)ik>|2

*

m G(w'wii+wki)}’ (6u)
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with wji (ej-ei)/K.
That these equations explicity satisfy the DT can
be seen as follows. With X a general frequency, one deduces

from Eqs. (63), (64) that

. _-BHX
055(-X) = e 655 (X). (65)

In particular, with X = w - Wyis We have

e-Bh(w_wji) ¢ (w-w..). (66)

¢ ji ji

ij(wji-w) =

Now, from Eq. (6?)
N airs >
¢,(-w) = v B222 gj pole) [<iluli>|? ¢35 (-w-wy). (€7)

By letting i ¥ 3, using pyley) = pyley) e I PEE I L

|<i|:|j>|2, we obtain

N __.
o(-w) = v B2EE T po(e ) |<ilii]i>]?
1]

. o Blluy; FPICIFETR (68)
Then from Eq. (66) for ¢ij(wji—w)’ we see
¢, (-w) = e~ BHW ¢, (w).

The above proof of the FDT is completely analogous
to the type of manipulations which are used in phenomenological

10/

theories—' constructed from the Egelstaff-Schofield complex-
time transformation method. In the present theory we have a
well-defined prescription for calculating the lineshape func-

tion in terms of the two-body T-matrix.

We might also mention that, although our present
theory does not claim to correctly treat the near-wing ab-

sorption, one can write down a perfectly reasonable inter-




polation formula which should be completely adequate for cal-
culational purposes.

Let us rewrite Eqs. (62), (63) as

-~

v n
¢2(w) = TP&"; Z. DO(Ci)I(ilulj>|2 ¢ji(w-wji),
ij

gil0wy3) = Npgp, &y (w-0y4)

per. (71)

The suggested interpolation formula is simply to
replace Eq. (70) by the expression

~ r

21
¢>ji(w-wji) T

)

= = - (72)
- . . +T.. —_ . .
(w mjl) Fjl(w wjl)

Although this formula does not rigorously satisfy
the FDT, the near-wing violation is totally negligible. 1In
the far-wings the formula reduces to our previous result,
which does satisfy the FDT. In the near-wing region fcrmula
(72) reduces to the impact theory, i.e.

-~ T

1
¢ji(u-w+i) = =

ji(O)

2,5 2
(w—wji) +Fji(0)

From Eqs. (63) and (71) we see

-~

_l. . .+ 2
5100 = Nper.ﬁ2 E (l<i|TCe, *1i0™) K>

1 G(wk—wj)

|<ifrCe, +io") k> |2 em 8w ~w,)).




This is essentially the general impact result. To obtain the
completely general impact result in an uncoupled line theory,
one must also include the contribution from ¢, (w), as given
by Eq. (46). In this case the effective F (w -ws ) is simply
the sum of contributions from the ¢ (w) and ¢ (w) terms. This
effective T can then be used in the 1nterpolat10n formula
(72).

It should be stressed that the uncoupled line theory,
discussed in this section, may be inadequate for describing
the extreme far-wing absorption. Referring back to Egs. (u5)
and (46) for ¢2(w) and ¢3(m), one can see that the full
theory, which includes line coupling contributions, allows
for more intermediate states, hence more possibilities for
energy conserving §-functions at large 4w. In addition, the
nmore corplicated terms, b, and ¢5, which are listed in Sec-

tion 2.5 may also become important in the far-wings.

Finally, to carry out detailed calculations within

the present formalism, one must ultimately deal with the prob-
lem of solving the two-body Schroedinger equation (53). Al-
though this is an extremely complicated problem, we believe
that progress can be made by suitable use of the adiabatic
approximation, coupled with semi-classical approximations,
e.g. WKB, for the translational motion of the system.

2.5 Higher Order Terms

The terms ¢u(w) and ¢5(w) which appear in Eq. (36)
are given explicitly by

{ 21
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N _. ©
- v _E%iﬁi [ dE po(E)

-0

¢, (@)

+ Tr {[8(H,-E) T(E+io®) (Ho-n-io*>‘1
+ (uo-z+io*)‘1 T(E-io") 8(H-E) 1%

. <H0-5~nm+io*)“1 T(E+Hw+io®) 8(H, -E-tuw)

. T(E+w-io®) (Hy-E-fw-io*) ™t

+ (H —F*io+)_1

0 T(E+ioh) § (H,~E) T(E-io") (HO-E—io+)—l ¥

. [G(HO—E-hw) T(E+hw+io+) (HO—E—hm~io+)-l

+ (uO-E—hw+io+)‘l T(E+Hw—-1i0") § (H~E-Hw) 1}, (75)

vV N __. @
pc(w) = —F2E2 [ dE p(E)
+ Tr {(Hy-E+io")™F T(E+io") 6(Hy-E) T(E-io")
. (H0~E—io+)—l u (H0~E-hw+io*)“l

« T(E+Aw+io®) § (Hy-E-~tw) T(F+Kw-io™)

. (HO—E-hw—io+)—l uy. (76)

These two terms may be shown to individually satisfy the FDT,
using the procedure outlined in the text.
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3.0 NEAR-WING CALCULATIONS OF H20 PRESSURE BROADELING

3.1 Pressure Broadening of H?O Transitions by N2 and Air

We have carried out impact approximation calcula-
tions of H20 halfwidths for N, (air) broadening. The main
motivation for undertaking this work was to reconcile theo-
retical calculations with the narrow observed widths measured
by Englg:zl/ and others for high J transitions. In addition,
we have carried out the first calculations of H,0 pressure §
shifts, and these have been compared to the experimental ;

shifts measured by Eng.

Our calculations have been described in detail in a

JQSRT articlezz/ which is included in the present report as

Appendix A. Here we give a very brief summary of the results.

The original calculations of N2 and self-broadening
for HQO were carried out by Benedict and Kaplanzgl using the |
standard Anderson-Tsao-Curnette (ATC) impact approximation §
theory. The results of their calculations have stood up re- |
markably well, considering that only one accurate measurement
was available at the time the work was carried out. However,
the Benedict and Kaplan calculations, with the Anderson mini-

mum impact parameter, bgln, fixed at the kinetic diameter

s & a o IR

(o]
value of 3.4 A, yield halfwidths which are too large by a
factor u.4 compared to the experimental results of Eng for a

number of high J transitions. Although better agreement can

be obtained from the Anderson theory by reducing bgln, we
have shown that one can set bgl equal to zero in the ATC

formalism and the calculated halfwidth for the transiticn
(15, 0, 15) » (16, 1, 16) is still too high; see Figure 2
of Appendix A.

A28

] We have carried out calculations using a formalism
" y .
: developed by one of the present authors.z—/ We call this

formalism the Quantum Pourier 7Transform (QFT) method. The




method differs from Anderson's in that energy and momentun
are rigorously conserved in the theory, and a Bcltzmann aver-
age over translational states is included. These combined
conditions lead to result that the probability, FCH&, AE), of
encountering a collision involving momentum transfer,ha, and
with inelasticity (total change in internal energy) AE, is
proportional to

1/2

P(IQ, AL) = —— (£m) expl—B™_ (Ap)?1, (17
or  Hiq? 2r2q?

with B = 1/(kBl) and m = mlm?/(m1+m2) the reduced mass.

From Lq. (77) we see that the collision preobability
is a Gaussian in the inelasticity parameter, hence the proba-
bility decays rapidly for large inelasticities. 1In the
Anderson theory the corresponding probability decays more like
a simple exponential. This means that collisions involvirg
large inelasticities are given much less weight in the QFT
treatment, hence dre less efficient in producing broadening.
Since the high J transitions typically involve large AF's,
the QFT theory should predict narrower halfwidths.

This is, in fact, the result which comes out of our
calculations. FDLetailed compariscns. Litweon theory and exper-
imerit may be found in Appendix A. In cbtaining reasor.able
agreerent with experiment (at high J) it is still necessary
to substantially reduce the valuc of b™" . The narrowest ob-
min of order 1.5 K.

0
This value seems too small to be physically believable, so

served transitions require a value of b

that the resulting explanation is still not completely satis-
factcery. Sirce the narrowest lines are only of order three

Doppler widths, and because these lines are unresolvec doub-
lets, it seems possible that sone complicated ccmbination of
mctional narrowing combined with line-coupling might contrib-

ute to the observed narrow widths. We have not investigated

this possibility in detail, however.
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The results of our calculations have been incorpcr-

ated into the latest edition of the AICGL Line Parameters
2N -
Atlas.;i/ The calculations were carried out with bgl“
o]
a compromise value of 1.75 A. A comparison between the re-

sults from a previous AFCL tape and our most recent computa-

set at

tions is shown in Figures 1 through 4 for the R(1, 1), Q(1, -1),

R(-1, 3), R(3, -1) series transitions. The state index on

these graphs is the integer J(J+1) + K, - KC + 1 for the lower

state. On these figures we have plotted the ratic of half-

width R = T /T versus the J-value of the lower state.
old’ "rew

Cases where the rario is greater than one are in accord with
our previous discussicn. In particular, we have (a) reduced
the value of bgln,
have used the QI'l' theory which always yields smaller half-

hence reducing the halfwidths, and (b) we

widths. In Tigures 1 - 4 we note, however, many cases where
the ratic is less than one. This is due to an extrapolation
procedure used on the previcus AFGL tape for high-J transi-

tions. It appears the extrapolation method underestimated

halfwidths for many transitions. We expect the halfwidths on

the latest AFGL tape to certainly be more self-consictent.
On the average, the newer widths will be narrower, and it is
hoped that additional tunable laser measurements will shed

light on the actual degree of improvement.

Qur calculations of H?O - N2 pressure shifts are
also presented in Appendix A. It is seen from these results
that the theoretical calculations for low J transitions are
in rather good apgreement with the experimental measurements

of Eng.

3.2 E?C Self-Broadening

We have constructed programs to calculate H,0 self-

brcadened halfwidths. Some of this work has been reported in

detail in a previous Scientific Report, Ref. 26. The main

motivation for this rescarch was the observations that mea-
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surements of H,0 self-broadened halfwidths frequently yield
values substantially higher than those calculated theoreti-
cally (see Table I, Ref. 26). We have found this to be the
case using either the QFT or ATC theoretical methods.

The observations suggest that some scattering mech-
anism, other than the usual dipole-dipole interaction, may be
important. The first such mechanisms which one might worry
about are the dipole~quadrupole and quadrupole-quadrupole in-

teractions between H20 molecules.

As discussed in Ref. 26, we have written computer
codes to calculate quadrupole moment matrix elements for H20
and other asymmetric top molecules. This calculation is far
from trivial since the quadrupole moment matrix elements of
an asymmetric top depend on two independent scalar parameters.
Our programs operate as subroutines which are attached to ex-
isting AFCL asymmetric rotor programs. The programs are
highly efficient, requiring approximately 60 sec of CPU time
to compute the strongest (AKa = 0, *2) quadrupole transitions
for J £ 22. These programs have been made available to users
at AFGL.

We have utilized the calculated quadrupole moment
matrix elements in a pressure broadening program which in-
cludes dipole-dipole, dipole-quadrupole, and quadrupole-
quadrupole transitions. Unfortunately, the results of these
calculations indicate that the quadrupole mechanism does not
substantially alter the theoretical results. Typically we
find a negligible correction for low J transitions, and at
most a 10 to 15% correction for high J transitions. It there-
fore seems that either some new scattering mechanism is in-
volved, or that the usual impact theory (with the collision
cross-section calculated in the Born approximation) is inade-
quate for describing strong HZO - H,0 collisions.
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APPENDTIX A

THEORETICAL CALCULATIONS OF HQO LINEWIDTHS
AND PRESSURE SHIFTS: COMPARISON OF THE
ANDERSON THEORY WITH QUANTUM MANY-BODY

THEORY FOR N2 AND AIR-BROADENED LINES
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THEORETICAL CALCULATIONS OF H,0 LINEWIDTHS
AND PRESSURE SHIFTS: COMPARISON OF THE
ANDERSON THEORY WITH QUANTUM MANY-BODY
THEORY FOR N. AND AIR-BROADENED LINESt

R. W. Davies and B. A, On
University of Lowell, Center for Atmuospheric Rescarch. 450 Asken Street, Lowell, MA 01884 U S A

(Keeeived V9 December 1977)

Abstract—Companisons of theoretical predictions for une-wadths and pressure sbfts of waler vap o trae-
sitions broadened by N, or air are presented using the Anderson=Tsao-Curnutte (A1C) theory of pressare
broadening and a more recent formalism denved by uang quantum many body technigues The theoretical
predictions are also coupared 1o available experimentat resulis, mchuding 10 measurenients of hatl widths
and eight measured vy-band line shifts. The standard ATC theory for multipole mteractions 1s peneral, o to
yield second-order pressure shifts. 1t is alvo shown that a scaling transformation from the momentum
transfer variable to the impact parameter varable converts the quantum theory to a form very simbar to the
ATC equations. The essential modification is to replace the ATC resonance functions fthy FiA) ny aew
functions g{k), G(k), which, however, hive a very different shape In particular, g(h) is 0 Gaussias, which
results from the simultancous constrants of 1 Boltzmann distribution of velociies, coupled with sinict
momentum and cnergy conservation in the collisten piocesses The miplication s that highly non-iesonant
collisions. i.e. collisions mvolving large nclastcitics, are given much less weght in the quantum-derived
formalism. The results are analvzed for both high aad low J transibans, icluding the bohavior of the
anomalously narrow tines measured by Eng and otheis w high £ aad the theoretical dependence of such
transitions on the parameter by, used 1 the carlier calcubdtions of Beaedict amd Kaptan. {imited
compatisons are made for individual level shifts, and for the tempetatue dependeace of the half wadth
Some specific suggestions for additional expenmentat studics are who offered

L INTRODUCTION
THE ABSORPTION of infrared radiation by water vapor in the atmosphere is of preat interest since
it plays a prominent role in determining atmospheric transmission to solar or luser radiation,
and the heat balance of the lower atmosphere.

The absorption of radiation near a line center requires knowledge of the line strenpth S, and
the collision-broadencd half width y. In the case of water vapor, very few accurate measure-
ments of half widths were available for comparison with theoretical caleulutions until the early
1960s. With the improvement in grating spectrometers, and the advent of runable Lisers for ir.
spectroscopy. a larger data base™ "™ is now available for study. One of the more intereatirg
recent advances has been the application of tunable lesers for accurate determinations of
collision-induced pressure shifts!'*" Although shift measurements for water vapor arc still
sparse, it may be anticipated that this will be an arca of some continuing interest, particulurly
because it furnishes a diagnostic tool for analyzing theoretical calculations.,

The purpose of th: naper is to make specific compatisons of two theoretical methods with
available experimental measurements of H,O) widths and shifts for the case of N, (or ain
broadening. The eartiest calculations”™ of H,O-N, hall widths were carricd ou! by Benedict
and Kaplan (BK) using the Anderson-Tswo-Curnutte (ATC) theoty of pressure broadening.' ™
™ Considering that only one accurate measurement™ was available at the time their work was
carried out, the theoretical results, with one notable exception, have stood up remarkably well.

In a comprehensive review article on microwave pressure broadening, BiRssauM® has
made detailed comparisons of predictions from the Anderson theory with experimental resulis.
In the case of water vapor he finds the agreement less than satisfactory. However, his
indictment of the theory appears to rest primarily on the following: (a) the theoretical half
widths are substantially smaller than those observed by Sasvtrson und Givsuuka,™ and (b) the
value of the N, quadrupole moment, Qs = 2,46 x 10 ™ esu-cm’, which was used by BE to fit the
microwave measurement of Brekek and Autnek!” i much smadler than that obtained frum
other experimental determinations.

1This work was supporicd by the Air Force Geophysios | alunatoiy . Realond, Massachesctts, under Contract No.
F19628-77-C-0053 with the Universty of Lowell
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Concernmg both of these points, part of the discrepancey i due o an crror which BR moade
in correcting the Becker and Autler measurement from air to Ny broadening This error has
been discussed in later publication”™ by the aunthors, in which they suggest that the resolts i
Ref. (17) be taken as vahd for dry aa. while results tor No-broadening should be obtuned B,
increasing the e wadths by approy 124 < present Anderson theory calcusbons indicate
that one needs Oy VOO » 10 *evu vm? dor puie N to it the Becker and Autler ine This i
in excellent agreement with the “hest avabable™ value, Q- Y04« 10 ™ a8 rccomnmiended By
Stocren and S106RYN Y Secondly - the tesults of Sanderson and Gins argh, for both Ny and
self-broadening, appear 1o be anomaloushy high compured to all other micasurements, aithough
no new results appear to have been reported fur precisely the transitions which tney studied

Companison of the tcorrected) Bencdict and Kaplan calvulations wath subsequent
measurements seems to ndicate, for lov J trauatons, thad the prediciions for half wdth (on
the average) tend to be smaldler than the observed values by o few per cent Sorae of this
discrepancy could undoubtedly be removed by placimz less werght on the ancrovase bag ised
to calibrate the theory. Furthermore, the more recent hugh resolution tunable fuser messure-
ments!'™ ™ generally appear to Jead to nantower e widths than those obtuned using gratoe
spectrometers, for which somewhat uncertam <ht width corrections are freguentiv required

The “notable exception™ referre v proviously concerns the discrepancy between the BK
half widths for hign J trunsitions (J = 13) and subsequent tunable laser incasurements 1or such
lines. As an example. the v, band transition 15,0, 1516, 1, 16, which has been extensivels
studied experimentally,'"' " ¢xhibits 4 measured (Ns>-broadened) half width of 0.0072cm 'futm
at T =300°K. The BK calculuted value is 0032 cm Hatm, too large o factor of $.4.

The origin of the BK result is exsy to elucidate The hudl wadth is given by y = (av/2a¢ e,
where ¢ 1s the velocity of hight, v - mean relative thermal velooty, oo perturber density wt ene
atmosphere pressure and temperature T, and o 1 the collision cross section. For the hieh J
transitions, where the long-range dipole—quadrupole interaction becomes weak (the collistons
are very non-resonant), the cross section is dominated by short-range repulsive interactions
which are approaimated by classical hard sphere scitering according o oy, = whh,. Here BK
take b, to represent essentially the minimnm “physically believabie™ value of the cut-off {ur
the long-range dipole-quadrupole tnteraction. For H,O-N,, BK choose by, = 3.2 A. which Is
close to the kinetic-theory collision diameter, 3.14 A, as determined™ from P-V-T measure-
ments on H,0-N,; mixtures. This immediately yvickds y = 0.032 cm 'raim for 7= 300°K.

The experimental results seem to indicate that the effective value of b, for high J
transitions must be substanually smaller than the BK vidue., i.e. they sugiest b, = 1.5 A. The
alternative tor perhaps equivaient) explaniation would appear to be tnat the true “potential™ ut
short separations is rather mushy. We use the word “potential™ here guardedly <ince s clear
that the teraction at very close distances cannot be rigorously formulated i .erms of wn
interachion hetween “malecules’,

That the effective value of by, for high J transitions might be substantially toss than the
Kinetic colhmon diameter is not totally unreasonable because the determinanon of the kiteac
diameter v Feaviiv weighted by contributions from low J (highl, occupied) states and it
therefore contuns hutle mformation concerning high J collisions for which a geometric
hard: sphere diamztsr s more appropriate.

In .iew of these considerations, one mizht attempt o improve agreement with experimen.
by takuig b, = 1.5 A as an empirical parameter and then using it in subsequent cacalations,
one does this in the context of standard ATC theory, one finds that the caiculated width at high
4 s still too large by a factor of about 1.4, due to the contribution of the dipole-quadrupole
interaction to the collision cross section. In fact, letting b, =0 and determiming the ATC
cut-off parameier, by, by the self-contaimed Anderson prescription Sab) - | one Snds7" tha
the half width saturates (becomes independent of by at a vatue of 0010 cm Yatm Sinee the
high J transitions are assoctated with very non-resonsnt dipole-quadrupole collisions, the above
difficuity suggests that the ATC resonance functions fk), Fuh), where & 2achAF e, decn
o slowly for Large values of the nclintiony Af

In this paper, we shall compare the ATC theory for widths sad shifts with o theory'™
‘developed by one of the present authors (RW D) hased on quanium maay-body theory.
Henceforth we shall refer 1o Ref. (26) wnd 1
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Although the theory developed 1 was detived osing grapiical many body techaiques. the
differences with the Anderson theory are of @ more mundane nature. In nanticula . 1o the ieved
of analysis carried out in [ both theories correspand to perturhation developments to secend
order in the intermolecular interaction. Furthermore. although the theory in 1 cotresponds 10 3
complete quantum-mechantcal treatment, noting the fact that molecules are beavy, ol
qQuantum corrections can be expected to be small. Also, for cases wiere the lowestorder vertey
corrections can be ignored in the many-body treatnient {coreespanding © S4P) e 0 in the
ATC formalism|, that the basic results derived in 1 can be obtained much mare simply using
Fermi's “Golden Rule” for sccond-order transition probabditics.

For practical purposes, the main differences between the theory of Tand the ATC appro.ach
are as follows: (a) the treatment in I rigorously conserves maanentuni wnd encrgy e the colliston
proces: 2. un the ATC approach both the angulur deflection and change in Kinetic cneigy of the
culliding molecnley, are ignored), and (b) the treatment in 1 includes o Boltzmann average over
the initial translaiional states (ATC simply use the mean rebative thermal veloaity ). Although the
trea:meni of points (). (1) in the ATC formalism s usually constdered 10 be adequate. the
Justificxtion is far from clear for collisions close to the hard sphere limit (wheic relanvely larg:
anguiar defiections may occur), andfor for collisions involving farge changes ininternal energy
(large inelasticities), where the concomitant change in kinetic caergics may also be uppreciable.
As will be outlined briefly below, one immediate consequence of the simultancous constraints
of energy and momentum conservation, coupled with a Rolizmann distribution of velociies, is
that off-resonance collisions decay as a Gaussian. This is a much mose rapid decay than obtains
from the ATC formalism. and in general, the shapes of the resonance functions in the 1wo
approaches are quite different.

The quantum theory devcloped in | is made tractable through the use of the spanal Fourer
transform of the multipole interactions. Henceforth, we shall refer to the theary in 1 as the
Quantum Fourier Transform (QFT) treatment. In this method, one writes the various multipole
interactions as

!
V(R) = (-.j;r')\fd‘qv(q)cw “, th

where R = R, = R, is the molecular separation, with K. I the center-of-minss comdinates. The
advantage of eqn (1) for a quantum treatment is that the unperturbed wave functions governing
translational motion are plane waves having the form W, (R e® W (Ry ¢ %0 Matrix
elements of the operator ¢ ¥ ure then trivial to calculaie,

Subsequent reduction, using second-order perturhation theory. leads to the result that the
probability per unit time of encountering a collision involving o total chinge in internai encrpy
AE, and with momentum transfer g, is proportional to

P(ﬁg. AE)Z]d‘&jd‘l\'zﬂ(ﬂ.)li(h:)'ﬁlt‘k, G e, et AEL )
Here ple,,). pley,) are the Boltzmann translational functions for molecules 1, 2, with €, -
#2k,22m, = P} 12m, and simitarly for €,,. It should be noted that the quantity kg, where g is the
Fourier transform variable introduced in eqn (1), is precyaely the classical momentum transfer
in the collision process. The double integration in cqn {2} may be carricd vat directly ustuy the
method outlined in Appendix B of Ref. (1): however, i is miuch simpler to muroduce the
transformation to center-of-muss and refative coordinates via

ke = k4 mftm, 4 mak,
kr =&+ onftmd moK.
The Jacobian of the above trinsforaation is unity, d the tansformation factorizes the double
integral to give
o ‘ Wk -a py )
P(fly.AE) ::;Id"—\’c “'“‘””“J'd'lx ¢ LN R TIPY I _')«I \ AI",_ )
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". where Z = 2oV imumMBEI', B Vnylo M (g b o), and m = myum: M i the reduced
mass. Evaluation is straightforward and gives

LU g™ B (g f"*l")’]
A [ . 13 PR SR . ib)
P4 8E) = i .4') ”‘"l zmr(‘” om G

As will be discussed further in Section 3, the term #7¢72m s generatly aegligible compared to
the (quantum allowed) inelasticity AL Then one obtains

. t g\ [ Bm 1]
4 ) - s apl - 2Ly (AR 4
I(ﬁ(_[.AL) \/(2")(,,)",) exp zh!q‘(AL)J 4)

1. the probability of a collision with inclasticity = A< is Gaussian. The immediate consequence
of the above result is that highly non-resonant collisions. e.g. H.0-N. collisions for high J
levels of water vapor, are given much less weight in the QFT theory. In particular, we shall
show, down 10 bow = 1.5 A, that the QFT theory for the transition 13, 0, 15— 16, 1, 16 is very
nearly equivalent 10 & gpuieques = 0- 101 fow J transitions, our results lead to essential agreement
with the Anderson theory, and this corroboration is not completely triviai in view of the very
different resonance functions in the two theories.

The outline of the remainder of the paper is as follows. In Section 2, we review the ATC
theory of pressure broadening arising from multipole interactions. This is done to establish
notation and also to present the generulization of the theory to include second-order pressure
shifts. The above genzralization of the ATC theory does not appeir to be well-known. and in
Section 2 and Appendix A we show that it essentially amounts to replacing the ATC resonznce
functions f(k), (k) by their Hilbert transforms. Then, in contrast to the width caleulation, the
line shift is given by the difference of the contributions in the initial and final radiative states.

In Section 3, we show that a scaling trunsformation, from thic momentum transfer variable
hq to the impact parameter variable b, converts the QFT theory to a form very similar in
structure to the ATC equations. In particular, the essential modific wior. is to replace the ATC
resonance functions f(k), F(k), and assoctated Hilbert transforms fth), Ftd), by a modified set
of resonance functions g(k), G(k), £(K), G(k).

In section 4, we discuss the application of the two theories to the specific problem of N (or
air) broadening of H,0 transitions. Details of the catculations are described and the actual *
numerical results are presented in Appendix B (widibs for 110 measured transitions) and i
Appendix C (shifts for eight measurca transitions). The resubts are analyzed and some specific
recommendations for further experimental studies are also supgested.

2REVIFW OF ALCTHILORY Wi GENVRALIZATON
TOINCILUDE SUCUGND-ORDER SHIEETES

The half width for o radiative transiion 1+ fas pven by tem Hatno

Ine

He o\ o "
Yy - ( ) 2, p(]_‘m‘,“_,':. O
T

where 1 perturber density at one atmosphere pressuore and temperature T (e = a273 Ty,
¢ = velocity of light, and v is the mean relative thermud velocits aiven by o= 8k, Ti(rm),
. where m is the reduced mass. Also. i eqn oS), pJs) is the Boltzmann factor for perturber stace
. )
For simphicity in the treatment which follows, we shall concider the case where the ATC
term Sy(Mnuaare = 0. For the case of particolar interest in this paper. i ¢. H:0-N., this resulis
because the diagonal matrix elements of the (permanent)y dipole moment operator of H,O
i vanish. Also, independently of the particular case. it may be teotously shown that the
second-order treatment of Sybyuge contnbutes nothing to the pressure shift. This s m
agreement with the conclusion reached in Ref. (1), fe. that the lowest-order vertex corrections
in the QFT theory ke no contribution to the shifi
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For o'f},. the ATC theory yields
cr},"'}_, = ﬂ[b“z + I 2h dbs ',,",'.‘( h) , (O
hll
or
"t;.‘}) = ”h()?“ 1 -s.‘.!'fl’,-(hu’l. ()
with
Ch . . .
stiibo = (355 )| KON AOW 1k
h'v'b yr
-l 3 nye
¢SO FRIAONH Jik) T
W
. "
(R Cn . g s n et g
St thy) = ( T'T”i)lz WEROWEW KT JO 50 0 1k
) hv'hy Iy
t g KAOdF K¢ l.-i|!é)l"l"<k,‘.t} : (7h)
i
In the above equations, we have denoted various reduced matrix elements of the dipole or
quadrupole moment operators, and the indices o = 4, 6, 8 jepresent the dipole- dipole. dipole-
quadrupole, and quadrupole-quadrupole cases, respectively. The functions o), Fthy are
well-kknown resonance functions discussed and tabulated by Tsao and Cokwatnr M and
2ach .. . . .
ko= —-;—-'(F.. A IR SRR {Kaa)
2uachy . . . .
ko= -T—"(h, ~ BBk (8b)
where the energies are in units cm ', and similar formulas apply 0 &, A 15 we e the
Tsao-Curnutte definition of the quadrupole moment reduced mat.in clement, the aumcerical
coefficients ¢, are given by
Ca= (H9) (d-d case), b (4145) (d  case). cx LI ¢« 150) h
It shou!d be noted that the definttion of Benedict aad Kaplan for the gquadrop .o moment coree-
with the Tsao and Curnutte definition, but this defimtion is twice the vidue saed By Brranavag Y
BuckiNGHaM.' T SToGRYN and S1arvN,Y and the definition cmpioyedt i Ref. (). Finaily. the
above equations assume use of Anderson’s “approsimation number two™ for determination of
the minimum impact parameter by, i €. by 15 1o be determined as the selution of the tnphait
| S equation
- Sifotbo) - 1. {1
..‘
We turn next to pressure shifts in the Anderson theary, n the orgunal AU formualation, o
first-order shift contribution is calculated, but the second order - taft s eliminuted throuph an ;
|
!
i
; 1The statcment following eqn (5.17) 1n Ref. (26) continns 4 Gy popraphical erron and should e ul
l().hl Z "I-/ﬁ”n”": , hu"": N
"
For a charge distnibution pussessing an axin () of soloent symmetry . s apteos with 18¢ dulontie 4 ased '
' BirngAUM.""
il
|
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approximation which neglects non conaunivity of certain quantum mechanical operators. As
pointed out in |, the first-order shift due (o multipole interactions rigorously vanishes, Althoush
“effective” interactions such as the induction and dispersion forces can contribute in first order.
it is well-known'™ that these forces are actuadly approximations to second-order (of higher-
order) interactions.

A generalization of the ATC theary toinclude second-order pressure shifts has been derived
by HERMAN™ for the special case of imduction -dispersion forces {for the interaction of HCL.
with inert gas molecules). In Appendix A, we derive the general formulas for second-order
shifts using Anderson's original formalism. Rather similar formal expressions can also be
obtained as hmiting cases from the theery developed by Mukeny and Boces,™ und a related
theory recently givea by Mirnrotka and Boaas. ™ We should also mention. in this connection,
that the theory of Murphy and Boggs is sumilar 1o the QFT theory in that a Boltzmann average
over the imtial translational states 1y included. However, computationally, when used in
conjunction with the classical path method, it appears to be mare cumbersome. since the double
integral over velocity and impact parameter must be performed numerically in the Murphy and
Boggs formalism.

The results for second-order shifts from the ATC theory can be expressed in a form verny
similar to the width formulas. The shift (cm 'fatm) is given by

,ll (¥ N} «
Ayy (Zm:> % I'U:)"./I_l_.. (i)
where
ot w [ 2 b, a2
ko
= whI S by (12b
with
st = (as ) { B ORI Ok
hv'h e
-3 iodnew ol a7k ). (U
) < . | RN
Siga o) = (F.Fhf"){,z GHOMEW I NONT I F ko)
: ; [AORIIAON DF Fikyo . (13h)

and ki, Ky, ky. kg have the same definitions as given previously,
In eqn (13), f(k) and F(k) are simply the Hilbert transforms'™" of fih) and F(k). respec-
tively, i.e.

k) = ';'f fae, (4

CPr[FRO K

Fk) =] oo

(lam

It is also to be understood in eqn (14) that f(h’), (k') are to be taken as even functions of £/,
1e. f(k') = f(Jk']). and similarly for F(k’).
Some useful formulas connecting the various functions should also be noted. vie,

Fiky - 24" ’f '«‘r"l‘,f“-?'. (15
i h

4o

}
|
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KJIK)

- LN l!‘_J:
Fk) = 2k L o

(15b)

Equations (15) are valid for the case A > 0. For & < 0, Ftk) - FOLD while F(xk)= -FUAD, e,
ftk), F(k) are 10 be taken as ¢ven functions of & while fk) and Fih) are to be tuken as odd
functions of k. That eqn (15b) is consistent with equs (14a), (145) and (154) can be seen as
follows. We lake the derivative of egn (154) und obtiun

kF'(k) = (n - DF(ky - 2fik). {16)
Next, we take the Hilbert transform of both sides of this cquation, which gives

Prfm KKK ok - 2k .
ol B Ty ={n - F(k) - 2ftk). (17)

In the numerator of the left-hund-side, we write k' = (k' - k) + k. This gives

3y £ L .t R .
Pr” ERIAK By - 2k, (18)
w ). Ak

L (Floy- F-an v &
w
The first term on the left-hand-side vixnishc.s, and, by a well-known theorem for Hilbert
transforms,*" the second term equals kF'(k), where F'tk) = (didk)F(k), which gives

kF'(k) = (n - 2)F k) - 2f(k). (19

Then, by analogy with eqn (16), and noting that Fecy = 0, we immediately obtain egn (15h1

The ATC resonance functions f(k), Ftk) are sufliciently complicated that it appears 1o be
necessary to obtain their Hilbert transforms numerically. Such results for the dipole-quadiupale
case are presented in Section 4. Since the Hilbert trunsforias are add, they vanish at A = 0. For
large k. one can easily sce that they must have the asymptotic lorm

flky=~BJk (k-w), (20a)
Fthky= - Bk (k-o), (20h)

where g8, = (I/m) 2. f(k)dk, B = (1/7) [+ F(k) dk. From eqn (19) une then obtains the result

-

Bi= ("--}l)ﬁw (21

which is a useful relation for checking the numerical calculations.

One final point to note is that we have not included the shift contribution in the doter-
mination of by. In Herman's paper.’™ a cut-off prescription is recommended which appears to
be essentially equivalent to

Stfj,‘bo) + I-\".fl,.l,("’o’l I

We will not use this prescription for the following reasons: G the theorctical justification is not
completely abvious, (b) we want 1o keep the correspondence with the carlier ¢ loulations of BK
as straightforward as possible, (¢) the shift conttibution s generdly smadl compired to the
width contribution, so. for most cines, vne eapects tather small corrections of the shift were
included in the determination of b,

The formulas in this section provide a complete deseniphon of the A1C theory of widihs
and shifts, except for the introduction of the paramicicr b, employed in the carlier cleuiations
of BK. This minimum “physically helicvable’ vdae of the cut-ofl 1s used as follows if b, =~ b,
[as determined by eqn (10)] use by in the caloutanon, otherwise use b, o place of by, For the
H;O-N, system, the dependence of the resutts o the charee of b, s discossed in Section 4

hl
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TRIDUCTION O THE QFF 1HFORY TO ANC FORM

In Ref. (1), the QFT theoty of secomd order pressure shifts was analyzed i detad For the
case where the lowest-order verten corrections vanish [cotresponding 10 Sy e = 0 100 the
ATC formalism), the lineshape function (' -» w) can be written as

[ o) - f y d'&f)((ﬁ")(l'.,é t |"".A!>“- ? o)
(e Fow - hw)y 1l t 1,0

Here we are using the notation of Ref. (). We will indicate the correspondende with the more
familiar ATC notation presently. In order to make such a correspondence. it Is necessiury (Liso
convenient) to ignore the inhomogeacous broadentng implied by egqn 223, and o repluce the
lineshape function by the simple Lorentzian

I
‘ e TUA e N N
fﬂy(h‘l" ‘(“.. (:. A ilal)' , l (1

where
- (.t Vouve, (24)
A= (A,,\ Au‘k)u\'c. {25)

Here (O)ave = [ d’kp(e,)0, implics an averspe over transiational states of the absortiag
molecule, with p(€,”) the Boltzmann factor. With the above approxiniations, I'is the half width
of the Lorentzian and — A s the shift. The object A is precisely the quantity caleulated for
multipole interactions in Ref. (1). Since the real and imaginary parts of the self-cnergy (A und
[ respectively} are connected by Kramers-Kronig relations, it is easy to sec that the only
essential modificution necessary to obtain 17 s the replacement of the principal value
denominators in equations such as (5.10), (5.19), (B.1) of Ref. (1) by 8 (energy denominator.
Thus for example, eqn (5.19) of 1 gets replaced in the width caleulation by the resonance
function

.

. i pm\N" e mpr 2 . N ML
F(AE,) = \7(2»”‘) ("qu) fwdlz expl- BmE 207y - nh(}: -AE, _’-‘,l‘—) (20,

or
. O w\ { b . R . _hffﬁ :] -
Ak = \/(2> (.'tzll}) pr[ R (AL" ! 2m ) ' =

The above result is essentially ideatical 10 eqn (3b) of the present aper. As mentioned i the
Introduction, the term £°¢°f2m, involving the square of the momentum transfer, is usually
negligible compared to the inclasticity AL, = (€2, - €,“1+(c5, - €5,). The argument fer this i
the following. In the ATC theory the multipole inieractions become divergent as b =0 and inust
be cut off at some minimum impact parameter by, Similaclv, in the QFYF spproach. the
multipole interactions become divergent at lurge q. Since g and b form esseatially a Fourier
pair, one must cut-off the multipole inteructions roughly according 10 g,y = Ubga. This
(RG220 s = (B2mb10). Taking Do, =~ 3 A, = 183X 10 ¥ grams as the reduced mass of
H;0-Ns, und converting the encrgy to cm Y, vields (B q?2m),, = 0.2¢m ' This value is totalhy
ncgligible compared to typical (quantum allowed) tnclasticiies, AE,,, for H.0-N; collisicns. It
might be noted. if the term (A2¢32m) is setined in egn (27), that the resulting theory for widtis
is formally convergent at lurge ¢ (the calculution of shifts stll leads to o high ¢ divergeaced
However, this convergence Is spurtons since it oceurs al valies of ¢ where the nniltipole
interaction is totally unphysical.

From the above argument, we hencefoith replace eqn (27) by the Gaussian formula

(T4
raska = (7 ('{”«,4”) cxp(‘ ,fo‘"’l,m;, n’]. 128
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Similarly, if we ignore (A29°/2m) in comparison 1o af", in cqn (5.22) of . then eyn (5.20), (5.21)
of 1 lead to the following resonance function for the caleulation of shifts:

"ﬂm 12 YN [T LLEK O
= YN ST B
) [+ Bl vi2hy f ¢ Je. ‘:9)

W) = (i

0

The functions [ (AE,) and v,(AE, ) are simply Hilbert pairs, in particular t

o Pr [TV E
WABE) = Ic. ;AL

Next one has to integrate the contribution of these funactions over . In view of eqni (5.11) of
1, the shift calculation involves

" . ! n .
L'"YAE,) = '('i;)\fd'lltl w(q) v, (AE,), V)
= 8! dqq™ * ¢ "y MAE,). (31h)
0
Similarly, for the linewidth one nceds
tn) Yy :_____I_, I 1 n, i b -,
M™(AE,) @y ) 44d’r4) FAE,). (32
=8 f dgq™ *e T (AE,). (32h)
0

The meaning of the index n is the same as in Scction 2, ie. 1 =4, 6, 8 for the dipole-dipole,
dipole—quad. and quad.—quad. cases respectively.

In eqns (31b) and (32b) we have also retained the phenomenological convergence facton
e ¥, which was introduced in I, where 7. = b,,.. We will now climinate this parameter in favor
of a cut-off procedure more closely related to Anderson’s method. To do this. we introduce the
scaling transformation

q =~ alb, 13y

where, at this point, a is an arbitrary (dimensionless) constant, and the length b hecomes the
new variable of integration. It is also uscful to chminate B in the previous equations by using

B Uk - 8f(mme?), REY

where v is the mean relative thermal velocity. This pives, with AE, < hAw,,.

(n) . Jﬁ) n 2J” [_’ d'} L 2aedb 4 bAe, Y <
M™(Aw,) (hv a L, b e -pr[- ” (--;"‘ ) ] (33)
32 , L] h l“’ R 4 "'A(U 2 vidin nl-.‘....u:.-.l .
(n) = — n-2 el larth . O o K
L"™Aw,) (——\/(ﬂ)hv)a , b e pr[ "( m‘L) ]‘[’ ¢dr. 36)

If the factor e ™¥* were not present, then, as in the Anderson theory, the above

expressions are divergent at the lower limit b 0 Here we choase to drop the phenonicnologi-
cal convergence factor, and to replace the Jower hinit sumply by by, where, with some
appropriate choice of the scaling parameter a. we repard by e an effective naninum iy 01
parameter. to be determined by Anderson’s self-contamed cut ofl procedure. Thus, i egny °5)

tA simple derivation of the Hilbest transform of & Ganssian may be found i Ref §32) e abvo Boef (4

e i i e e
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and (36), we let

j" h \i" ¢ i, b }'.’_’. an
o b v "
Finally, it is clear that the above procedure only defines an approximation to the long-range
contribution to the cross section, oy . In the spirit of the Anderson cut-off method, this is 1o be
augmented by a short-range contribution, asy = why'. corresponding to classical hard sphese
scattering.

The remainder of the reduction of the QFT theory to ATC form is now completely
straightforward and the details will not be presented here. Some helpful correspondence
between the notation in the two theories s as follows:

Ref. (1}-» ATC Notation
u—f
ju i
v h
v, =13
jw—=itor ff

The following relation involving reduced matrix elements is also useful in the reduction:

we o (2 2 .
IO = (5 7 ) lOME, 138)

and it should be remembered that the definition of quadrupole moment employed in Ref, (111«
one-half the BK definition.

The final result of this analysis is that the QFT theory cun be gcncﬁ;xicd from the ATC
equations with the following simple replacements of numerical constunts and resonance
functions:

ATC - QFT
" . 8 n 2
cftky-r e a” etk)
™
b k)= cn - at U Glk)
t",'f(/\)-'(‘,', a” gk

k- ¢,

H13X 3 > 39

a" Gy an

In the above correspondence, the condtants ¢f. for n = 4, 6, 8 were previoushy given in cyn (9.
Using the BK definition of quadrupole moment, the corresponding coeflicients in the QFT
theory are

n
= .;"7 (d-d case), cq = VW0 (d-g case), cx = O (g-q cusel.

‘The resonance functions g(kh), Gy i the QT theory are piven by

.

(k) cxp{ JA;}.
m oo

“hdA

(k) -~ 2k" - ey elh'y (k> 0).

e
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The functions g(k), G(k) are simply the Hilbert trunsforms of g(k). G(AY and are given
explicitly by

. 2 4 kZ [MANE Y VYY) ;

g(k):-\—/; cxp[—:ﬂ-;;][ ¢ de, (EX))
- “k'dk’ .
Gky=24" 2 . %A()f Stk (A 0N (+H

As in the ATC formalism, g(k), G(k) are to be taken as even functions of & while g(h). Giky
are odd. It should be noted that eqn (42), (44) are completely anidogous to eyns (1500 and (15h)
of Section 2.

4. APPLICATION OF THE THEORIES 70 H,0 BROADINED BY N,

The original calculations of Benedict and Kaplan were carried out tor pure rotational
transitions and ignoring vibrational-rotational coupling. We have attempted some refinement of
the calculations by utilizing programs developed ut Air Force Geophys.os Laboratory which
treat the vibrationai-rotational coupling in H,O via the Warson'™ wvymmetnic rotor Hamil-
tonian. In the case of the ground and v, vibrational states, the present calculations are based on
the best available constants for the Watson Hamiltonian as determined by a least-squares fit. In
the case of transitions involving the v, vy and 2v, states, becanise of the existence of accidentul
degeneracics between these states, we have simply performed caleulations using ground-state
energy levels and eigenvectors. It is doubtful that this approximation introduces large errors in
the calculations of half-widths, however, it is certainly inudequate for the calculation of
pressure shifts. On the other hand, at present only #; experimental shifts are svalable for
analysis.

In our Anderson theory calculations, we have proceeded as BK did by choosing Qs the
nitrogen quadrupole moment, to force a fit to the S, 2, 346, 1, 6 microwave line studied by
Becker and AuUTLER. The experimental half-width is 0.087 cm ‘futm at 38°K in air. From the
tunable laser measurements in Ref. (14) for low J transitions, one infers an air to N» correction
of yn,= 1.1045y.,, and applied to the Becker and Autler result yields yy, = 0.0%1 cm Matm.
When the difference in temperaturcs is taken into account. this is in good agreement with the
result obtained by Liese and DiLton'™ for the sanie transition Ly, 0.104¢m "fatm at 300°K).
For the H,O (ground state) permancnt dipole moment d;. we have tahen the value'™ o, =
1.85 x 10 '* esu-cm, which is about 1% smaller than the BK choice. We then obtain i fit to the
Becker and Autler line if Q2= 3.00 10 *esu-cm®. As mentioned in the Intioduction, his iy in
excellent agreement with the “best available™ value, Q: < 3.04 % 10 ™ ¢su-cm’, as recommetded
by StoGryn and SToGRYN.'?"

In the notation introduced by BK, egn (7a) for the dipole-quadrupole case sray be wntien as

LY
b = (%’f") {Z D, QU Ik £ 3 DU QUL I D)tk ). 4%
i 11
wheret
) 4 d|()‘ 2qlie
Aoy = [45( e )] ' o)

In the above notation, the corresponding formulas (7h). (130 and (13b) for S5 (hg), 55 40h) and
S5,(bo) are obvious. )

Turning now to the QFT theory. the correspondence piven in eqgn (3%) for the dipole-
quadrupole case is equivalent to

]
Aifth) -+ At 0 Ytk
(A ) 1lh ), (17)

tEquation (44) i Ref (17) contaims s typogtaphical eren

e
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where Aj = Apola®l(10m)]", and obvious similur replacements for the other resonance
functions.

In applying the QFT theory, one is now confronted with the problem that the scaling
parameter a, which was introduced in order to obtain a cut-off procedure similur to Anderson’s,
is not given g priori, and therefore a ends up as an additional undeterminedt quantity, Two
reasonable methods for fixing a are given below.

We note from eqns (41) and (47) that the two theories may be made identicul for purely
resonant collision (k « Ak - 0) by choosing

a = (10m)" = 2.36749. (48)

A plot of the various dipole-—quadrupole resonance functions for this choice of a is illustrated in
Fig. 1. It is obvious from Fig. 1 that the above choice of a will require a much larger valuc of
Q: in order to fit the Becker and Autler line. Again taking d, = 1.85 Debye as the H O dipole
moment, we obtain u it if O, = 4.61 X 102 esu-cm?®. This value seems far too high, however, we
will retain it for purposes of comparison. We shall refer to the results derived from the above
choice of parameters as QFT L

Ty T T p CTTTTYyT TCTTTTY Tt T T T he Dt ]
k: 1.0 2.0 3.0 4.0 k= 1.0 2.0 3.0 4.0

14 1.7
12k 1-6
1Ol ) r Fix) .5

~ 1
8} N 4.4
6 glr) ' Glk) 13
al . \ \ 4.2

~

2 g \ \ 4.1

S~ S .

S k. S e i i " 0
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Gl — Gk} - —
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- / 42
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-1L2F 46
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Fig. I Companson of ATC resonance functions ik, Fohy, and their Hitbert transfors fik), Fihy. with

the QFT resonance functions g(k). Gik), and associated Hilbert transforms 5k), Gk The plot is for the

case o = (107)""* = 2.36749. which mahes the theonies wdentical for an-tesonance (A -+ 0) coilisions. Note

that the k-scale for the Hilbert transforms s twice the saaie for the resonance fonctions The resonance
functivns are even funcaons of A, the Hibert transforms are odd functions of &,

A second method of proceeding is 1o choose the “hest wvailcble™ value™ Q.=
3.04 x 1072 esu-cm?, and then to fix a from the calibration line. This yields ¢ = 2.79. which is
18% higher than the previons choice. The results devived from this second set of parameters
will be denoted by QFT |1

Qur final results indicate that the difference between line widihs as calculated using the two
sets of parameters is never very great. ‘This has the positive implication that the caleulated
widths are furly insensitive to the combined chowee for (Q. a) over a reasonable range,
however, it also implies thal Q; cannot be accurately deternined i the preseni theory. As

tFrom eygns (%) and (16}, 11 15 obvious on making the change of varubles of iteeraton b wb’ db o db that the
expressions for M'™'(Aw,, ), L (Bew, ) are actually idependent of o However, when the tranution to the Arderson cut-off
procedure is made vin eqn (37), whete by is to be ot erpreted as an effective mimmum unpact pasvneter, the results are ao
longer indepemdent of o

URS
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pointed out in the Introduction, it appears that the overall rms error between theory and
experiment at low J (for both the ATC and QFT theories) could be reduced by placing
somewhat fess weight on the Becker and Autler tunsition. However, in this paper we are more
intecested in comparing trends than obtaining o best-fit 1o the avitlable data. The Latter
procedure would surely require great selectivity, owing to the difference and accuracy of the
experimental procedures used to gather the data.

To complete the discussion of the calculational procedures, we make the following remarks.
Since most of the experimental results are confined o the temperature ranpe 295-300°K., we
have performed all calculations at 297°K. We have also carried out the calculations for pure N,
using 30 occupied N, levels, and the rotational constant for Ny was chosen ws 20em ' It
should also be noted that many of the quoted expenimental results we for air rather than pure
nitrogen. We have not attempted to correc for this, however, from Ref. (14, one expects
nitrogen-broadened widths to be approx. 109 higher for fow J transitions. For very high J, this
is probably no longer true since the scattering cross section is dominiied by oy, = b,
Finally. in the case of the QFI calculutions, it may be noted from cgns (41)-(44) that the
resonance functions g(k). G(k), 2(k), G(k) are funciions only of the parameter

K kla - 2nchAE at. (49)

This results in a considerable computational simphticition because the resonance functions can
be tabulated once and for all as a function of K. and then vsed according to egn (49, The
remaining dependence on a can be lumped into the coupling constant Ay as indicated in egn
(47).

The results of our calculations for half-widths are presented in Appendix B where we have
divided the transitions into three distinet groups: Group Bl hoes with neghgible sensitivity to
tetting b < 3.2 A, Group B2 lines with some weak sensitivity to the reduction of by, and
Group B3 lines which are strongly dependent on the chowee of by,

For the fow and intermediate J lines listed in Group B1, we note that the QFT and ATC
calculations lead to substantizl agreement, the general trend beng that the QFT widths are
smaller than the ATC widths, with maximum differences of order $%. We also note that the
QFT 1 results are consistently smaller than the QUET {1 results, however. the ditferences are
typically of order 1%. Therefore, the distinction between QFTU | oand QFT 11 will not he
belabored in the discussion which follows. Although the overall comparison of the theoretical
and experimental results is not completely satisfactory, we note that most of the larze
discrepancies are associated with the measurements of Refs. (8) and (9), where the observed
widths are consistently high compared to the theoretical values. 1t should be noted that the
results in Ref. (9) are for air-broadening, while the calculated widths refer 1o No-broad. ning.

The Group B2 lines of intermediate J-values (8 < J = 13) exhibit the <ume general irends,
except that they show same sensitivity to the reduction of b, below the BK value of 3.20 A
The QFT results exhibit the greater sensitivity, duc to the Gaussian decay of the QFF
resonance functions gtk), Gk) at large inclasticities. For these transitions, we note, if b, is
reduced 1o a value of 1.50 A, that the theoretical widths are in poor agreement with the ubsers ed
values of Ref. (9), however. they arc in reasonably pood agreement with the measurements of Refs.
(15) and (16). Of these measurements, only one'™™ is a tunable laser observation,

The gioup B3 tines. involving high J valucs, are seen to be extremely sensitive to the choice
Of B In Fig 2, we present a plot of half-width vs b, for the transition 15, 0. 1S~ 16,1, 16 It
is seen, if one i willing to wlow values of by, as small as 1.8 A, that the QFT theory can
account for the narrow measured width. The ATC theory, on the other hand, suturates at a
value for the haif-width of 0.010¢m 'fatm.

It seems clear that no theory such as Anderson’s (or the QFT theory as used hered. which
treats the width s & sum of two independenm contributions from a long and short-range part,
and which further approximates the short-range part by chissical hard-sphere scatteting, cun
provide much further theoretical understanding of the narrow hines at high J. The arsument for
this is simple. In the present approaches, the scattening cross section nay be wntten

T AR T mhiw o1 k. (510
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Fig. 2. Theorctical half widths as a function of b, for the vy transition 15,0, 85 -+ 16 1, 16. The theoretical
result o = bl (v k- 0)is indicated by crosses. The experimental result is culled from Kefs. (1214

where, in the case of interest here, oy g arises from the dipole-guadrupole interation.

We imagine that it were possible to calculute o g exactly or to any required high order in
perturbation theory. Now ¢y is necessarily positive or zero. The best one can hope wor is that
an exact calculation (for high J transitions) would give o, g = 0. In this case, o = 7b;.,. The
result of such a calculation is also indicated in Fig. 2. 1 is seen that the QFT result 1s virtually
identical to ; ¢ = 0 (maximum difference of order 8%6) down 10 b, - 1.50 A,

It appears that there are essentially two paths toward further progress. The first approuch is
simply 10 accept b = 1.50 A ity an empirical fact, and then to use it in al! fature caleulations
(in place of BK's value b, - 3.2 A). Our resualts for the Group B3 transitions indicate that this
should work fairly well, and the QFT theory appears o produce the more satisfuctory results.
The one rather glaring exception to this is the # transition 13, 0, 1312, 1, 12 measured by
Totn." Here the ATC theory produces distinctly better agreement with experiment. However,
the fact that hoth the ATC and QFT widths are tov small at b, = 1.50 A suggests that part of
the difficulty may be duc to the use of ground state energics and eigenvectors in the theoretical
calculations. It would scem that the most crucial guestion is how well the theories will work
(With bpe = 1.50 A) for lines of intermediate J values. As stated previously, our present resuits
for such (Group B2) transitions are rather incanclusive in this regard.

The second (ebviously more difticult) approach is to try to formulate the detailed interaction
which takes place at small infermolecular separations Such a theory must account, at least
qualitatively. for the strong repulsive exchange interactions which occur when the electron
clouds overlap, and must yicld the dipole -quadiupole interaction at Luger separations. Unless o
“potential” to describe such effects can be formulated semi-rigorois!y from first principles. we
visualize that the results of such a theory would largely be a reflection of whatever parameters
were initially built in to specify the interaction.
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A final point to be made in this connection s that the QET result piven in eqn (4). i e the
probubility for a collision involving inclashicity, AFss Ganssian, is very peneral. In particular, i
assumes only conservation of energy and momentum, and a Boltzmann distnibution of velo-
cities. It can be applicd 1o any potential (phenotacnetopical or otherwise) for which the Fodrier
transform cxists. and which can be treated using second order pertubation theary. Although
both of these assumptions rua into difficulty at very close molecular separations, the implication
of weak collisions for high J states seems vatu!

The results of our catculations of pressure shifts for measured #y tansitons are presented in
Appendix C. The theoretical calculations (from both theoiics) show no relation 1o the expen-
mental results for the two high J lines 15, 1, 15-+ 16, 0, 16 and 14, 1. 14-215. 0, IS No
explanation for this difficully is presently availablc, although one possible iterpretation is that
the shift for these high J transttions cannat be conectly calculited without treating the
short-range interactions in detail.

For the remaining low J transitions, the QFT theory gives the correct sign of the shift for all
six lines, and yields numerically accurate values for four of these transitions. 1t i also
interesting to “interprec” the frequency shift in terms of the individual level shifts of the lower
and upper radiative states. Such an interpretation v not completely unambiguous since the
determination of b, is a joint property of the mitial and final staies i, f The results of such an
interpretation are shown schematically 1 Fig. 3 for (he three trunsitions 8, 3. 59, 4, 61 6. 4,
27,5, 3and 5,0, 5~6, 3, 4. The results for the other three Tow J transitions of Appendin €
are essentially identical 1o the situation depicted m Figo 3(h). From Fig. 3. we nate the following
results: (1) in all cases the signs of the individual level shifts are identical from the ATC and
QFT calculations, (2) in most cases the shift of the lower (pround) state level is targer than the
upper (;) state shift, (3) only in the case of the 8, 0,5 state is the Tevel skift nepative. Reearding
point (2), the ATC result for the transiion 8, 3. S-+9_ 4. 6 15 anomalous in that the upper state
shift 1s greater than the lower state shift and this leads 10 a positive frequency shift.
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Concerning the sign of the level shi, it s casy to see that the contnbution to the stft of
state i from a collision i-+i', J,-»1% will be  positive  (negativel  when A,
(2mebolvME, — Eq + Ep, - E, ) is positive (negative). The dependence on the perturber states J-,
J; makes a complete analysis difficult, however, faking into account that the rotational const.in
for N, is small, ko will tend to be positive (negative) when (£, — E,) is positive (negative). We
then consider the state i = (5, 0, $) where the theory eads 1o a negative level shift. This state
has strong allowed dipole transition 1o the states i' = (4, 1, 4). (5. L4 (6. 3. 40,16, 1. 6), with the
dipole line strengths given, respectively, by D(.i') = 0.3554, 01774, 0.01i3, 0.4524. The cor-
responding energy differences are (E - E.) = 100.51, - 74.11, - 323.64. ~ (2191 cm . We note
that (E, - E,) is negative for three of these transitions, and. in particular, is negative tor the
strongest transition. Although such arguments are rough, they may be useful for a qualitative
understanding of the level shifts.

A final quantity of interest, e.g. to meteorological apphications, is the temperature dependence
of the half width. Because, to our knowledge, no accurate experimental deternunations of this
dependence exist, it scemed unwarranted to undertake an extensive theoretical iavestigation of
this question. However, of some interest here is the comparison between the predictions from the
ATC and QFT approaches.

In the case of the ATC theory, it is generally found''” that a power law of the form

YD) y(To) = (1l T)". (1)

adequately describes the temperature dependence. We have also found this 0 be true in the
QFT theory, at least for low J transitions (where the choice of b, plays no role). Results for
the exponent, m, for four lines of relatively low J are shown below in Table 1. We see from the
results in Table | that the two theorics are fairly consistent, with manimum differences of order
8%. The results at fow J arc also roughly consistent with an effective cross section which is
temperature independent, ie. the prefactor ne in eqn (5) 18 proportional to ()" hence. an
average effective cross section which s temperature independen: would vield w = 0.50.

At high J, e.g. the »; ttamition 15, 0, 15 - 16, 1, 16, we find o complicated temperature
dependence. which also depends sensitively on the choice of by For example. if we choose
beun = 1.50 A for the above transition, we find drastic deviations from the power law of eqn (31
the temperature dependence ¢ y(T) is much smaller than at low J. and the Anderson theory
leads to a positive temperatare dependence jeorresponding to m being negative inegn ($11]
while the QFT theory predicts a negative temperature dependence. An experimental in-
vestigation of this question would be interesting but probably extremely diiicult due to the
narrow line width and relatively slow temperature dependence (in going from 225 10 3I50°K the
ATC and QFT theories predict a change in y of + 16 and - 11% respectively).

In conclusion, we offer the following appeul for further experimental studies:

(a) It would be valuable to use high resolution tunable lusers te remeusure {in the 1, bands
some of the low J transitions studied in Refs. (8) and (9). The Sunderson und Ginsbery

Table | m eqn ¢S,

U
F ATC ]

Transition BK (Preesent Results)® QI 1 Tl :
o e e e = —— S 1
S.2,4 ¢ b,1,b 0.626 0.6249 0.601 APEIRL
[ S S S ﬁ - (I
2,2,0 + 3,1,13 0.649 0.06%9 0.6un LAY |
6,47 . 7,'..3' 0,404 0. uRb 0.u2% O.uhn ‘,
1,1,0 » 2,2,1 J U.blo 0.6720 [{rE] U.no? ]

* f'resent results depived tor 2% <7 <« 350°K, the BK

vesults were derived tor 200 < T < 300VK,

t v. transition; all other:. are pure rotational tranoadien .
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measurcment of the 1, 1, 02, 2, I transition rentains as o pasticutarly acute ecmbarrassment to
the theories. For the low J transitions, we have generally found good agreement between the
results from the ATC and QFT calculations, and these are lines for which the long-range
dipole—quadrupole interaction is dominart, with very weak dependence on the choice of by,
Drastic discrepancies between theory and experiment for these lines can only sesult from the
inherent uncertainty associated with the Anderson cut-off method. or possibly with the use of
second-order perturbation theory to describe the scaltering processes.

(b) 1n order to ascertain the effect of reducing ba., to a vilue of 1.50 A, it would be useful to
make a number of high resolution measurements of widths for transitions involving inter-
mediate J values, e.g. J's in the range 9= J 5 13. These lines, theoretically, will exhibit some
distinct dependence on whether one chooses b, = 3.20 A (the BK valucl, or the choice
Boa = 1.50 A which is suggested from the measurements of Eng at high J.

(¢) It would be extremely useful to collect additionul laser measurements of H ) pressure
shifts. This is an area where the difference between the ATC and QFT calculations cin be
pronounced even at low J values. Such measurements could help to dilfeicntiate the merits of
the two approaches.

If satisfactory resolutions of some of the above uncertainties can be obtained, it would
appear that the theory presented here can be applicd with rather good contidence to widths of
H,0-N; over a wide range of J values. The calculation of shifts 15 more delicate. and the
success of the present calculations appears to be limited 1o low or intermediite J transitions.
Additional experimental results should delineate the range of validity.

Acknowledgements—We would like 0 thank S. A. Crouas and F. X Kniwzvs for aumerous helpful discussions. and for
the use of their asymmetric rolor compuler programs.

REFERENCES

1. V. E. Zuev, Atmospheric Transparency in the Visible and the Infrared Ketetr, Jetusalem (%70

2. G. E. BE(KER and S. H. AuTLER, Phys. Rer. 70, 300 (1946),

3. H.J. Liesg and T. A. Diteon, J. Chem. Phys. 50, 727 (196Y).

4. J. R. Rusk, J. Chem. Phys. 42, 493 (1965).

S. R. EMERY, Infrared Phys. 12, 65 (1972).

6. L. FRENKEL and D. Woons, Proc. JEEE 54, 498 (1966).

7. 5. E. PearsoN, D. T. LLewgL LYN-JONES and R. J. KNIGHT, [afrared Phys. 9. 83 (1969).

8. R. B. SANDERSON and N. GinsurG, JQSRT 3, 435 (1963).

9. J. R. Iza1T, H. SaKAl and W. S. BENEDICT, J. Opt. Soc. Am. §9. 19 11969).

10. M. A. GUERRA, M. KETABI, A. SANCHEZ, M. S. Frap and A Javan, J. Chem Phys. €3, 1317 (197
1. F. A Brum, K. A. N, P. L. KrLfey, A R Caravia and 1. C. HARMAN, Scienee 177, 694 (19724
12. R. S. ENG, A. R. CALAwA, T. C. HarMaN, P. L. KELLEY and AL Javan, Appl Phvs. Lett. 21,303 (141,
13. R. S. EnG. P. L. KELLEY, A. MOORADIAN, A. R. Catawa and T. C. HARMAN, Chamn Phyy 1ot 190424 (1973),
14. R. S. EnG, P. L. KELLEY, A. R. Calawa, T. C. HarMar and K. W. Nuti, Molee Phys. 28. 653 {1974)
15. C. K. N. PaTEL, Phys. Rev. Lett. 28, 649 (1972).

16. R. A. Totu, JQSRT 13, 1127 (1973).

17. W. S. Benenicr and L. D. Kartan, C Chen Phys. 70, 388 (195

18. P. W. ANDERSON, Ph.D. Thesis Dissertation, Harvard Untversity (19491

19. P. W, ANDERSON, Phys. Rev. 76, 647 (1949).

20. C. 1. Tsao and B. CurnuTTE, JQSRT 2. 41 (1962).

21. G. BirNBAUM, Adr. Chem. Phys. 12, 487 (1907).

22. W. S. BeneDIicT and L. D. Karian, JQSRT 4, 453 (1964).

23. D. E. StoGrYN and A. P. STOGRYN, Molec. Phys. 11, 371 (1966)

24. 3. O. HirscHFeLDER, C. F. Cugiiss and R B. Bikn, Molecular Theory of Gases und T wgrd s Wiley, New York (1964,

25. R. A. MCCLATCHEY, W S BenepicT, S. A Crouci, Do E Beranr, R A Caoer . K Fon, U8 Rotmas and 1S
GARING, AFCRL atmospheric absorption hne parameters compilations. AFCRI-TR-73-006, Favwoun.catal Research
Papers. No. 434, Air Force Cambridge Research Laboratones, 1 G Hanscam Au Force Bane, Bedfurd. MA 01730 (26
January 1973).

26. R. W. Davigs, Phys. Rev. A12, 927 (1975

27. A. D. BuckINGHAM, Quart. Rev. (Londen) 13, 1R (1959)

28. R M. Herman, Phys Rev 132, 262 (1901

2. J.S. Mureky and J F Roues, ] Ciem Phys S4, 2843 (1971

30. S.C. MrurotRA and J | Buxas, J Chom Phyy 66 S0 19717)

3. H. Bateman, In Tadles of Integred Fransforms (Bdied by A bty Vol 2,0 200 McGraw Hl Now York (1944

32. R. BaLESCU. Statistical Mechant s of Charged Particles, 10 1ntensaence i ondon (1963)

33. B.D. Fruiep and S D). ConTe, The Plusma Dhspersion Functeor ACademic Press, lew York (1001

34. ). K.G. WaTSON, J Chem Phys 36 193¢ (1967), 48 4517 (10

35. S A.CLouGH, Y Beewn G P Kinvand 1S Repsacn [ b [hy . 89224401907

36. W.HEntin, The Quantum Theory of Radiation od b dn ¢oes viatond Ve ay Boo Do dean (197

3. DM GAntS. R F F Carrrr . W Hanan and WS 10 e o MBS Monegiaph T8 W han b Iat (1N,
Ol




e

R W avns and B A (i
! APPENDIX A
Second-order pressure shifts in the Anderson formahsm
Let us begin with the integral equation for the 7 matiix m Anderson’s theory
TR (;)I o de, (AD
; Hory - e™ MY () e Mo, A
= where Hy is the unperturbed Hamiltonian, and H, (1') s the collision Hamdtonian with the clussical-path Bime-dependence
Tteration of (A1) leads to the series given in eqn {49) of Anderson's onginal paper.™ Similarly.
; L]
T =T -1+ (;)f TUH ‘Handr. AL
Tteration of cyns (A1) and (A3) to second order yields
>
T-wTw)y Ty+Toe M-
1 e
L T'=lmTu) - 14T, 4T e (Ad)
Py
with
To= 1o "=,
1
] To==T, ' -, AS
2
where (in Anderson’s notation) i
| . i
: P hf H.hde, {Ab) i
‘ I Co '!
. Ty= - h’J dl'J dt"H (1YH, (17), A7)
, . [ -
T - "h-;f dl'f de"H, UM H ) LA,
1f the non-commutivity of H.(£'). H. U™ in eqns 1AT) and (AB) is ignured. then by a standurd ek of interchanging he
names of the dummy variables of integration, une obtains the result of eqn {31)1n Anderson’s paper, ie.
R R
L=T,"=-;P". 1A%
Now, for the calculation of the cross section, une requires diagonal matr elements of Ty From Anderson's approximation
(A9) one finds
| \
(alTyln) < - S n|P2im)
l -l R '
‘ Ty \‘:, (n|Pln"Xn'\Pin)
.
1 ap
< E Kella)
I |V [ . s
=- 22, ll [ _dre=="nlH (o), (AN
WhEre won = w, -~ wy = (ES® ~ E™)A If we define the Fourier transform
- hd |
‘o H (w) - I dre " H (1), (Al ‘
|
then cqn (A10) may be writicn ~ (
. Ixa ft |
(alTdm) 5 3 | nlH, (o ) (M)
, The correct treatment of egn (A7), on the uthet hand, yields

(n}T4n} E( ':,) I d(‘j et e H A K L e (ALY
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Theoretical calculations of 7,0 linewidths and pressure stfis "

The trick now is to introduce the inverse Fourier transformn

HA1) = -,l;rf duM, (wre ™ (Al4)
Making use of this in eqn (Al3) gives
(n|7',|n)=—(2—'lh—)§2[ dw'f dw"(nlll.(u‘)ln')(n'lll,(m“)ln)-I et = f der e ttme e (A15)
The integration over " yields'*
3 - >,
f A% e W = g ety [n&(m...- vayri , (Al6)
- Wan t @
The 1’ integration then simply gives |

J’ drre " b’ 1 W), (Al

When the integralion over w” is eliminated, we obtain (with o' - w)

(n|T|n) = -Eljil; Z [ﬂ:dw(an' ('’ |H, (- w)ln) - [ﬂ&(w..,.‘ ~w)ti (AIK)
Since H (1) is Hermitian,
(n'|H (-wlin = (n|H Aw)n')*. (A1)
. 50 that
. Ty = =3 5 |3 ol o 5[0 i (A)
. . o) e v

A little consideration shows that (n{T, *{n) = (n|T3ln)*

We note that the real part of eqn (A20) is identical to Anderson’s result of eqn (A12). and this pives the usual
contribution of Sy(b)ouer (0 the line width. The imaginary term in cqn (A20) yields the second-order shift contribution, and
this term is precisely the Hilbert transform of the width function. Subsequent reduction of the cross section using the
standard ATC methods then leads directly to eqn (13a) for 3§/} (h)

Finally. to obtain

SE (b= 2 I 2b dbs't b, (A21)
; hu by
% we require integrals of the form
LS .
¢ NI .
i h..’ L" » {tk, ) (A2
where k, = bAw/v. Since
* - Pr [ fthydk’
f(k.)’-'”'J" [A' i
we need
1 [“2bdb Pr (7 fth)Jk
-t <049 L MR A%
I=32). 7 nI.L'- (hhwr) '
|- - We let k' = p'fv where ' is the variable of integration. and then reverse the orders of integration. This gives
L4
K J
Pr{~ do 2 (" . . bhdb
=% f - ba, a.;.?fh,, [tha'le” o
I Pr{* do “hdb
_no dw a0 »dif . (A24
h" n [.m’ Aw, 2bo ww P fibw'le. A
Next, we ket b = kvjw’ and obtun
: PPt e _,f‘k.u
2y k1, 28
’ 1 hn'ﬂj,w'-dm,‘ At ftky (A2Y
o where ko = boa'/v. From eqn (15a). this is just
\ .
3 i Pr A .
: - “Chy A
[ - - ! ho'u,[.m' Aw,'“.‘ 1Aty
\\ # JOST Vel M. Ne 1~H
o K 53

I |
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Finully, multiplying the numerator and desiominator of cyn (A26) by bylv, yiclds

Ui (" dhoF e Fiho

B +
"u. 4 - ‘n - ‘.u hu. (A-7l

where ko = boAw/v. This analysis inmediately yields cqn (13b) of Section 2.

APPENDIX B
Half widths for measured N, (or air) broadened H,0) trunsitions
. The following lines show applicable values for the succeeding table. Common parameters: T =297°K. d, =
85% 10" * esu-cm (ground state), d, = 1.82 x 10" esucm (1 state). Anderson Theory: @ = 3.00 x 16™* esu-cm®. QFT I
Q=461 x 10 ™ esu-cm?, a = (10m)"* = 2.36749. QI 11: Q= 3.04x 10" esu-cm’. a = 2.79. Half widihs in cm™*fatm.
( )= Results of Benedict and Kaplan at 300°K; for Rel. (16), theorctical values as quoted from GATES ¢f al..*” rot = pure
rolational transition.

—r—p

Group BI. Lower—Upper (J, K, K, ).

Transition ATC Qrr 1 QT 11 Cxperiment & Reference

5.2,7 » 6,1,6 rot. [0.10046 (0.10045 | €.10050 | (calibration linc)
(0.090) 0.087 (Air, 318°K), Ref. (2)
G.108 (N, 300°K), Ref. (1)

2,2,0 + 3,1,) rot. |0.106823 |0.10610 | 0.10629 J0.095 (N,), Ret. (W)
(0.496) G.111 (NJ), Rel. (5)
0.111 (N2). Ref. (6) :

3,2,L * 40,4 rot. [0.10558 (0. 10479 G Lauuld 10.095 (Air), Ref. (7)

(0.09%)
1,1,0 » 2,2,1 rot. JO.1135%4 jo.1060% JO,.1084% |0.18 (Ny). Ref. (8)
(0.102)
USRI SRR SR
332,01 > 4,3,2 rot. | 0.09662 10.09555 [ 0.09591 10.12 (N,), Ref. (8)
(0.087)
4,2,2 + 5,3,3 rot. [0.09919 [0.0497492 {4.09836 [8.1) (N,), Relb. (8)
{0.089)
b $,3,3 + §,6,0 rot. | 0.07J48 [0.0706) j U.u7t48 | 0.08 (Air), Ret. (9)
‘ (0.0606)
VTSI U— — [
3 , $,3,2 *» 6,6,1 rot, |v.u808% {0.0790% | 0.07984 | v.09 (Air), Ref. (9)
' (0.073)
e e ———— e e o= PSR
; 6,),4 = 7,6,1 rot. [0.0727% {0.us98: [ 0.07043 {0.07 (Air), Rel. (9) .
- (U.06%)
KJ p- —————— s i ety
b 6,3,3 + 7,6,2 rot. n.uubblﬂ p.onl’a u.nuub;_10.07 (Air), Ret. (9)
(0.071)
6,2,5 ¢ 7,5,2 rot. 1 0.07382 [v.070% | o.07112 | 0.08 (M), Ref. (9)
(U.067)
- 6,1,6 «» 7,4,3 rot. |0.0837y [O0.080%2 Jo. 00137 010 (Asrr), Kot ()
'.. (0.070b)
o SRR SR B
f 7,3,% » 8,6,2 rot. ] 0.06973 J0.00721 | 0. 00777 | 0.0 (Air), Ket. (Y)
(0.06))

]
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Transition

7,3,4 + 8,6,3 rot.

b e e e

7,2,6 + 8,5,3 rot.

7,1,7 = 8,4,4 rot.

ATC

0.u8920
(0.040)
B.0606Y
(0.062)
0.08417
(0.076)

0.083%6
(0.07Y)
0.10178
(0.093)

5,3,2 + 6,4,3 v

0.080649
(0.040)

8,3,5 + 9,4,6 v,

4.3.6 + 10,4,7 v,

6,1,6 - 7,2,4% v,

I,

64,2 + 15,4 v,

0.09201,
(0. 09%)

.08

G.0472493
(0.086)

0.0715%

Group BRI (Condr)y

QiT ) QIr it

0.08811 ] 0. 08h6Y

0.06408 | 0. 0L

0.0795]) o oudty

0.07970 | b.ousum

U.039%3 |G 1uny

O.08498 | b, 08%/06

G099 Lo o0

00017 O 0 sne

g.0u837 L o 0usam

0.06917 1 0,004946

0.06483 [ 0. 0ObLYYH

0.06272 | 000 14%0

0.0615% J 0. 0b214

3,1,2 » 4,41 vy

(U.060)
6.4,3 > 7,5,7 v, W 0.0L757
(0.063)
I
5,4.1 + 6,5,2 v, 0.065U7
(6.060)
— § SR
5,4,2 + 6,5,1 vy D.06191
(0.0549)
$,0,5 » 6,3,4 v, 0.086L28
(0.040)

0. 0264
(0.085)

4,2,3 » 4,14 sz

0.09941
¢6.091)

3,2,2 » 3,1,3 2v,

——
0.104U})
(0.09%)

2,1,2 - 1,0,¢ sz

0.11724
(0.104)

0.0H04H [ . 08233

0.08698 | 0. 08873
0.09456 | 0. 09605

| ____+

0.10057 [0.L0L9%

U.10%65 {0.ttL186

3,0,3 + 2,1,2 7v2

0.1105]
(0.099)

2,2,1 + 2,1,2 2v,

0.30597
(0.09b)

3,3,0 - 3,2,) 2v,

0. 0YuuY
(0.084)

Iy1,1 » 6,0,0 2v1

0.11084
(0.100)

1,1,0 - 1,0, v,

3,1,2 » 2,2,1 2v2

0.12340
(0.108)
0.10%%9
(n.N9%)

0.10703 J0,.108%

SV S

Q.10288 1 0. 10387

0.09317 1 0.094063

G.10263 10.10529

—— N .
0.11298 | 0.114%90

PO RO S

0.10311 Jo.10¥20

U.LA298 | 0.1 ES90

2,7,0 ¢ 3,1, Iv,
2,1,7 » 1,0, 7v,

ri,n,n e 8,1, 7v7

1,0,1 » 1,1,0 2v, 0.12340
(0.111)
0,0,0 + 1,1,1 2v, |0.1108%
(0.100)
3,0,3 + 3,1,7 2v, 0.110131
(0.049)

[ A
(u.0uh)

0.orinthi
.m0}

DRIl

0.10263 | 0. 10479
0.10620 f o, 10711
G0 Jooiaerin

[ R LA PR A ST NI TR

0. v [ RITAU N

L

(v.u97)

Experiment L Kefecemee

6,09 (Air), Ket.o (1)

0.07 (Air), Ret. (W)

0.08 (Aiv), Ret. ()

o 08 (Air), Ret. ()

g.aan (N)). Kae (iay

0.104 (N}), Ket . (lu)

O.0R1L (N,), Retsy (L), (1n)
0.071 (ALY, Red. (1u)

D.0BY (Hy), Ret o (%) !
0,081 (Ayr), Kt (lu)

0,092 (Np), Hel- . (13), (1)
0.084 (Air), Ret. (1u)

0.053 (Air), Releoo G4, (10)

0.054 (Air), ot (1a), (IW)

0.063 (Ar), kel 1 1)

3.0%8 (Air), Ket!. (11)

0.098 (N,), Ect. (14)

0.088 (AYr), Ret. (1u)
e a .- ..._\{
V. 096 (51). kel . (L)

0,006 (i), ket tiw)

0.083 (Air), Ret. (10)

@101 (Air), Kedo (1)

0.101 (Air), Ret. i) \

0.09% (A:r), Rel. (14)

0,097 (A, Rety (1)

0.10% (Air), Ret. (16)

0.109 (Air), Ret. C(10)

0.09% (Aie), Ret. (18)

0.110 (Air), Ret. (1)

0,107 (Air), Ret. (16)

e e ]

u.10% (Air), Ref. (10)
wolu (Ae), Ket o Girwd
Wb (A, Bel . Q10D

g b (Acrd, e, i)

s
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‘1
- Ié RV Daasad B A Ol
,‘
1 tsoup Bt Contd)
Transition ATC [V [FIN N Lxperiment L Reteronee ‘
3, 0,2 » 3,2,1 ?v2 oo Lo ugund Lo i012% 10,098 (Aa), Ret.o (1) l
(0. 04s)
- doluds Lo posen foaesd [ 0,047 (Alr), Kot (1n) !
(u.098) i
, . . FO U .
! DotunZz e fugjasmn g 10808 | 0,009 (Air), Ret. (1) |
b (u.uan) !
k.
1 —_— i attieieindeeslin AR ol RS St -
' 2,0,2 » 3,1,3 2v, [O.11879 {0, J0H0Y | 0.11016 | 0.101 C(Air), Ret. (1o} .
0.104) '
3.1,9 > u,0,u 2v, D107 10030200 [ U LBEDL 1 0.0492 (Alr), Reto (1) 1 ¢
(u.u%) ;
S S . . e . 4 E
2,1,2 » 2,2,0 2v, [ uaaesus b yreres [ ooi0s87 | 0,105 (AD), Ret. (16) !
(0.094) '
5,0, = 4,1,u4 2v1 010053 [ poogsns | u.uda8l | 0.097 (Air), Ref. (16)
(0.091)
6,1,5 * b,2,4 Jv? 0.10238 | g.ugyss | 0. 30072 | u. 098 (ALr), RKeto (lu)
(u.09")
C. 3,0,3 + 4, i,y ?v) O.1085% [ ootasau ] 0oboues | 0,099 (ALr), Ref. (1) :
(0.09%)
8,b,3 + 7,44 v, G.oLGul L uLune/e b 00630 1 0.067 (Air), Ref. (1u)
[QUAIATY]
W14 » 5,0,% ?v2 V.097306  0.u%076 ] U 09283 | 0.089 (Alr), Ref. (lu)
(u.0yH)
Bl - u, 2, 2v2 0. 04998l [ p.o9be | 0.0960% | 0,090 (Air), Ret (1)
(0.090)
* —— e e mm bl - R . L
4,0, * 5,1,% ?v? 0.09996 [ 0. 09627 | 0.0973% | 0.08% (Air), Rel. (lu)
(u.099)
3 '; 7.1,6 » 7,2, 2v, D.0979 Lo,oa0ns ! 0.09191 ] 0,082 (Air), Ret. (Lw)
(v.08%)
WaZy3 v 5,0, 2y, G.L021% [ 0.10003 | 0.10062 | 0.089 (Air), Ref. (l16)
(0.092)
T,2,5 + 7,3,4 2v) 0. 10288 [ o 10007 { o tuoul | 0088 (Air), Ref. (10)
(0.0494)
6,7, + 6,3,4 v, 0.1028/ 1 0.099%4 | 0.10070 | 0.U86 (Air), Ret. (1b)
3 (0.094)
- SRS SEUU PR S S _—
Tatyl + 6,4,2 vy 0,060 L UL ouewy [ u 06739 [ 8,069 (Ar), Ret. (i}
i (U.059)
1,1,1 » 2,2,0 2v, 0.10700 ] 0.1u260 J 0L10N07 [ 0101 (Air), Ref. (16) !
(0. u9s) !
—— RIS N SE PN R — —————
34,5 + 8,3,6 Y1 BoURKBI0 | o 0dn00 | 0.0k | 00080 (Air), Ref. (1w) |
(u.u’)
3,2,1 ~ 3,3,0 ?v? 0.0949% 1 0.09317 | 0.09363 [ v.091 (Air), Ret. (o) ]
(n.ush)
A —_— e - ,__.,_"_ e e = v e e —— e me— —
W52,3 ¢ 4,3,2 2v, B.09208 | 0.0n887 | 0, 08945 | u.08n (ALr), Ret. (Le) ;
(0.083) J
7.6,1 ¢ 6,4,2 v 0.0%273 L0 0m955 | nLusoul | 6.051 (Air), Rel. (1) |
(0.0%0)
1 PRGNS URT - . S - - ____._.__.1
6,2,5 * b,3,4 2v, 0.0d4302 1 0.079%7 1 0.08052 | 0.071 (Air), Retl (1n? |
Co.07%) ) ,
— - o e —_ i
b 8,9, » 7,23 v, B.o7830 Lo o7y {oooierg 1 0.073 (Air), Rel. (1n)
& (0. 0LY) ___4'
- U,l,3 » 5,2,4 2v, u.|n|||1 FoE0L 0 001077 [ 0,040 (Alr), Kell (1ad
(1. 01) { )
|
e e e . . O U S U
8,4,5 + 7,2,6 v V07150 | o, 0u?SH [ o o862 | 0.081 CAir), Ref. (Lo) !
3 (0.06)
M SO U . . . S DU et e e e -
. T,5:7 *» 6,4, v, 0.06931 | 0 0b938 | U.OLLAB | 0,069 (A1), Ket. (1&)
/ (0. 0664)
. - - +nw. R S s e e ey
705,38 *» 6,4,2 1 0.07320 Jo.otenl { 0.07T09% ) 6,012 (Aar), Rel. (iv)
| (0. 066) l
[N Y N —— — PR e ———— c E— . — —-ae - :
Todow » Tyh, 2 7v? 0.097406 1 009 06 [ 0,09675% | 0,083 (Air), Ret, (1) 1
(Q.088)
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ansition ATC

6,1,% + 7,2,6 v,

O.0onu’n
(un.niu)

U
b ———

0,4,3 » By 3,4 2v

[qUNILLD

0.07904

? {0.072)

6,2, + H,1,% vy 0.101%1
(o.087)

T8, + 6,3,3 vy 0.09780
(u.0749)

5,5,0 + 4,3,1 v, 0.0772%
) (0. 0LY)

G.4,3 » 5,3,2 v, 0.080]7
[QUNTYRD]

7,2,5 » 6,0,6 v, 0.095%2

(0.u749)

e

Group B0 (Cond)

Qr Qrr o

U088 39 ) 00

P AR .

vy 0.09287 | u.09uus o092
(0.uB4)

b,yb,1 » 5,3,7 vy 0.08407 J O.Q8L2Y | w2y
u.g7a)

$,3,2 » 5,4,1 1v7 V.08708 | 4,0861% | . tBLsY
(v.o1)

T,8,3 » b3 N \o1 Q.0us%78 J O Od268 | B i
(u.078)

8,4, » 7,45,4 v,y 0.09HL | O 9938 | 0.0/
(0. 080)
VU SENTO -

2,2,1 ¢ 3,4,0 /v G.0%4%2 paaqb e o uazm

D 07%40 F 0.n7es0

v.10zis | u.tn2he

.09l oo

R

.a7h%ub |

0.0u191 O.0tunY

0.0416% |

b2

57

0017 (Ave), 10

0.077 (Air), K

Fxperanent b

S (A), Ke
Dol (Aie), Ke

O.then (Anr), Ke

potau (Arrd, ke
uA. ['R] (/\u-).wm-
L0l 4(’/\1!‘).- INE
0,001 (Aied, ke

0.086 (Air), Ke

.03 (Ave), Ko

.08 (Ave), ke

LA (Aae), B

Reterenes

o
|

(R

_—

1)

(ln)
i)
) |

(“.)~
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Thearetical calculations of H.0 b
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Lxp. result:s same as above
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D.01:S (Air), Reto (1))
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APPENDIX C

Line shifts for measured N, (or air) broadencd W fransisiom Qe shifts in cm Jatm
Transition AlC [60 2SS QFT I1 Exper.ment & Relerence ]I
R
wower =+ Upper (J,K .KC) -0.023¢8 (N.), Refs. (1), (.33
15,1,15 = it,0,15 9, -0.0233 (Alr), Ref. (12) i
min ® 126 0.¢2035 | €.00639 | 0.05028
2.50 0.00247 | 0.60131 | ©0.00123
1.50 3.00391 | C.01298 | C.0i+51 i
1eai,le e 15,0015 v, -0.Ciel (AQD), Ref. (13) |
Bpyp * 3-25 0.05337 | .04 | 0.930eC ;
i 2.50 0.00126 | C.0%:%3 ] ©.00132
1,99 0.00865 | C.J1763 | C.CLS63 l
4 _
5,3,3 = 9,0,0 o, i -0.2068 (w.), Ref. (33)
boig ® 3. 20A° 3.00058 | ~0.33%10 | -0.00238 ‘
as Z.50 3.00058 | =3.065w23 | -2.05235
1.50 3.35958 | -0.92929 | -2.35235
Gyey2 + 7,5,3 ) -0.82E3 (Air), Ref. (12) f
min ° 3.2¢c8 ~5.0040) | -0.00¢u5 | -3.20853
: 2,56 -2.00%01 | -0.00u55 | -0.0060« ,
1.5 -0.004 ~0.0065% | =0.2060k
0 0oL 01 G
E49,3 *» 7,5,7 v, -0.905% (Air), Ref. (.3) !
s .= 40208 -0.003¢d | ~0.00067 | -0. 00637 :
MmN g 50 -0.00384 | =3.006687 | -0, 30627 !
L.50 ~0.00388 | -0.C3687 | -0.005L7 N
. 1
Si9,1 % 6,5,2 v, -0.0697C (Air), Ref. (1) i
D7 t.ind “G. el -0. 00843
R Ioh -0, w2l —o.L3es? ;
Lo BT S IS NN B SRy !
5,%,2 = 6,5,1 v, -0.0070 (Air), Ref. (13) i
bbb o= 3,004 -0.00433 | =0.00722 | -0.C06u8 i
g A 250 -0.00433 | -0.00752 | -0.00666 .
1,50 -0.00433 | =0.00752 | -C, 006686
1
I's,0,5 = 6,3,4 y, +C.0064 (Air), Ref. (la3 ‘
| L T s.zai 8.00916 | 0.013us | 0.D11SS
mino 2050 0.66916 | ©0.Cl3es | 0.01155
1.50 0.00916 | 0.01346 | ©.011SS
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